

C++17 branche à la compilation (`if constexpr`)

Posté par Adrien Jeser le 05 décembre 2016 à 10:07.
Édité par Oliver, Davy Defaud, Benoît Sibaud et claudex.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	c++17

	c++

[image: C et C++]

Chaque jour de décembre a droit à sa surprise. Après la fixation de l’ordre d’évaluation des expressions, aujourd’hui, le calendrier de l’Avent du C++ présente la spécification technique P0292 concernant les conditions à la compilation, grâce à if constexpr.

[image: Logo C++FRUG représenté par un gros "C++" au centre du cercle de la Francophonie]

Sommaire

	Plusieurs nommages

	
Simplification du code générique
	
	Sans if constexpr :

	Avec if constexpr :

	
Remplacement du SFINAE
	Brève explication sur le SFINAE

	
Revenons au if constexpr
	Sans if constexpr

	Trait

	Avec if constexpr

	Mixer if constexpr et if classique

	Remplacement du #if ?

	Faut‐il continuer à apprendre le C++ ?

	Réutilisation

	Les auteurs

	Continuer à améliorer ce document

	La suite

Plusieurs nommages

Cette fonctionnalité a connu plusieurs nommages au fil des discussions entre les membres du comité de standardisation :

[image: Chronologie du nommage de la fonctionnalité]

	
2011 : le nommage original était static_if et static_else ;

	
2015 : l’avènement du mot‐clef constexpr apporte une nouvelle terminologie qui se différencie de static. Le nommage devient constexpr_if et constexpr_else ;

	
mars 2016 : lors de la première réunion du comité de normalisation, les deux mots ont été détachés pour donner constexpr if, et constexpr_else devient juste else.

	
juin 2016 : à la seconde réunion, les deux mots sont inversés pour donner if constexpr.

Simplification du code générique

Cette fonctionnalité est un outil puissant pour écrire du code générique compact. On combine plusieurs patrons (templates).

Sans if constexpr :

void fonction()
{ std::cout << std::endl; }

template <class T>
void fonction (const T& t)
{ std::cout << t; }

template <class T, class... R>
void fonction (const T& t, const R&... r)
{
 fonction(t); // Gère un argument
 fonction(r...); // Gère le reste
}

Avec if constexpr :

template <class T, class... R>
void fonction (const T& t, const R&... r)
{
 std::cout << t; // Gère un argument
 if constexpr (sizeof...(r))
 fonction(r...); // Gère le reste
 else
 std::cout << std::endl;
}

Remplacement du SFINAE

Brève explication sur le SFINAE

D’après Wikipédia en français :

Le mécanisme décrit par l’abréviation SFINAE (Substitution Failure Is Not an Error) permet de surcharger un template par plusieurs classes (ou fonctions), même si certaines spécialisations, par exemple, ne peuvent pas être utilisées pour tous les paramètres de templates. Le compilateur, lors de la substitution, ignore alors les instanciations inapplicables, au lieu d’émettre une erreur de compilation.

C’est une technique de métaprogrammation qui permet de sélectionner une fonction générique surchargée à la compilation. Plus spécifiquement, le SFINAE signifie que le compilateur ne considère pas comme une erreur un problème d’instanciation. Le compilateur va alors essayer de trouver une autre instanciation similaire possible.

Voir aussi l’article sur Wikipédia en anglais ou sur cppreference.com. Un article en français, mais non libre, est également disponible sur developpez.com.

Chère lectrice, cher lecteur LinuxFr.org. Souhaite‐tu une dépêche consacrée au SFINAE ? Alors exprime‐toi dans les commentaires et de nombreuses personnes vont certainement unir leurs forces pour t’offrir un superbe article sous licence libre. Bon, si tu n’oses pas demander, personne n’aura l’impulsion pour se lancer…

Revenons au if constexpr

Dans certains cas, le if constexpr peut avantageusement remplacer la technique du SFINAE.

Sans if constexpr

Voir sur gcc.godbolt.org.

template<class T>
auto f(T x) -> decltype(std::enable_if_t< std::is_function_v<decltype(T::f)>,int>{})
{ // ^---true si T::f existe et que c'est une fonction
 return x.f();
}

template<class T>
auto f(T x) -> decltype(std::enable_if_t< ! std::is_function_v<decltype(T::f)>,int>{})
{ // ^---le contraire
 return 0;
}

Trait

L’exemple précédent utilise enable_if et is_function qui sont des traits de la bibliothèque standard. Ce sont des classes templates qui réalisent un petit traitement à la compilation nécessaire au SFINAE.

Par simplification, nous avons utilisé les suffixes …_t et …_v dans std::enable_if_t (C++14) et std::is_function_v (C++17) qui correspondent respectivement au type d’aide std::enable_if<…>::type et à la variable d’aide std::is_function<…>::value.

La bibliothèque standard de GCC 7 implémente enfin la variable d’aide …_v (C++17). En revanche, cela ne semble pas encore être le cas pour Clang-3.8.

Avec if constexpr

Voir sur gcc.godbolt.org.

template<class T>
int f (T x)
{
 if constexpr(std::is_function_v<decltype(T::f)>)
 return x.f();
 else
 return 0;
}

Mixer if constexpr et if classique

Il est possible de mixer les deux syntaxes. La convention actuelle est de commencer par if constexpr. L’inférence du type de retour peut aussi être utilisée. Un exemple vaut mieux qu’un long discours :

template <bool B>
auto f (std::string const & s)
{
 if constexpr (B)
 return std::string("top");
 else if (s.size() > 42)
 return true;
 else
 return false;
}

Notons que la fonction f() n’a pas besoin d’être constexpr pour utiliser if constexpr, tout comme pour utiliser static_assert(). Même les lambdas peuvent utiliser cette fonctionnalité, que du bonheur.   \o/

Remplacement du #if ?

if constexpr peut, dans certains cas, remplacer le #if du préprocesseur, mais ce n’est pas l’objectif. Après, selon l’usage qui en sera fait…

À ce propos, qui veut se lancer dans des expérimentations ? Merci de publier vos trouvailles dans les commentaires. ;-)

Faut‐il continuer à apprendre le C++ ?

	[image: Panneau « Please Do Not Feed the Trolls »]
	[image: Panneau Troll barré]

	Ne pas nourrir les trolls
	Ne pas nourrir les trolls

Merci de nous aider à structurer et consolider les différentes idées sur cette question dans l’espace de rédaction collaboratif de LinuxFr.org : Faut‐il continuer à apprendre le C++ ?

Réutilisation

Le texte de cette dépêche est protégé par le droit d’auteur la gauche d’auteur et réutilisable sous licence CC BY-SA 4.0. Les images utilisées sont aussi sous licence libre (cliquer sur l’image pour plus de détails).

Donc, n’hésitez pas à réutiliser ce contenu libre pour créer, par exemple, des supports de formation, des présentations (Meetups), des publications sur d’autres blogs, des articles pour des magazines, et aussi un article C++17 sur Wikipédia dès que Wikipédia passera de la licence CC BY-SA 3.0 à la CC BY-SA 4.0 (le contenu de cette dépêche utilise la version la CC BY-SA 4.0).

Les auteurs

Par respect de la licence, merci de créditer les auteurs :

	les principaux auteurs sont Adrien Jeser et Oliver H. ;

	les nombreux autres contributeurs ayant contribué sur l’ancêtre de cette dépêche ou sur le dépôt Git sont : eggman, Yves Bourguignon, Storm, gorbal, palm123, khivapia, BAud, Segfault, Benoît Sibaud, Lucas, cracky, Martin Peres, RyDroid, olibre et Guss.

Continuer à améliorer ce document

Malgré tout le soin apporté, il reste certainement des oublis, des ambiguïtés, des fôtes… Bien que cette dépêche restera figée sur le site LinuxFr.org, il est possible de continuer à l’enrichir sur le dépôt Git du Groupe des utilisateurs C++ francophone (C++FRUG). C’est donc sur ce dépôt que se trouvent les versions les plus à jour.   (ღ˘⌣˘ღ)

Alors que cet article restera figé sur le site LinuxFr.org, il continuera d’évoluer sur le dépôt Git. Merci de nous aider [à maintenir ce document à jour][md] avec vos questions/suggestions/corrections. L’idée est de partager ce contenu libre et de créer/enrichir des articles Wikipédia quand la licence sera CC BY-SA 4.0.   ٩(•‿•)۶

La suite

La dépêche suivante nous dévoilera une autre nouveauté du C++17.

Chère lectrice, cher lecteur LinuxFr.org. Tu souhaites apporter ta pierre à cet édifice ? Rejoins‐nous dans l’espace de rédaction collaborative sur LinuxFr.org (un compte est nécessaire pour y accéder).

À suivre…

Aller plus loin

	
Dépêche préliminaire dans « Les coulisses du standard C++ » (CC BY-SA 4.0)
(127 clics)

	
Dépêche de mise en bouche racontant la genèse du C++17 (CC BY-SA 4.0)
(107 clics)

	
Dépêche du 2 décembre : « C++17 indique la disponibilité des en‐têtes (header) » (CC BY-SA 4.0)
(118 clics)

	
Article sur la fonctionnalité “if constexpr” par LoopPerfect (droit d’auteur non mentionné)
(118 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/b123fc7e25a29e896d7b2597c1e7869dc9f8f41e7d117ac6b8e59b6f.jpg
PLEASEDO'NOT
ED THE TROLLS

5 UNKIND AND UNNECESSARY

EPUB/imagessections78.png
%

