

C++17 exprime la virgule flottante en hexadécimal et offre des cadeaux aux lecteurs de LinuxFr.org

Posté par Adrien Jeser le 07 décembre 2016 à 23:03.
Édité par Davy Defaud, Oliver, ZeroHeure et Storm.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	c++17

	c++

	humour

[image: C et C++]

Chaque jour (ouvré) de décembre a droit à sa surprise. Après le if constexpr, aujourd’hui, le calendrier de l’Avent du C++ présente la spécification technique P0245 concernant le littéral pour exprimer la virgule flottante en hexadécimal.

[image: Les Nerdettes s’entraînent pour le concours des littéraux hexadécimaux sur LinuxFr.org]

Sommaire

	Spécification technique

	Représentation exacte

	La pratique

	Concours

	Notation

	Termes du standard

	Utilisation de strtof() et std::hexfloat

	Réutilisation

	Les auteurs

	Continuer à améliorer ce document

	Appel à contribution

Spécification technique

La réunion de Jacksonville en février 2016 a amendé le TS P0245 qui permet d’exprimer les virgules flottantes (IEEE 754) en hexadécimal. Le C++ permet enfin d’avoir une représentation exacte des virgules flottantes. Cette fonctionnalité était déjà présente depuis longtemps dans d’autres langages : C99, Java 5 (2004)…

Représentation exacte

La représentation hexadécimale a l’avantage d’être celle du registre (mémoire binaire). Attention à la notation décimale des virgules flottantes. Par exemple, 0.1f ne vaut pas exactement 0.1 mais 0.10000000149…. Un exemple :

#include <stdint.h> // int64_t
#include <iostream> // std::cout
int main()
{
 float un_dixieme = 0.1f;
 float f_1e11 = un_dixieme * 1e12f; // Erreur d'arrondi
 int64_t i_1e11 = 0.1 * 1e12; // Pas d'erreur d'arrondi
 double diff = f_1e11;
 diff -= i_1e11; // soustraction f_1e12 - i_1e11

 std::cout.precision(99);
 std::cout <<
 "un_dixieme = "<< un_dixieme << "\n"
 "f_1e12 = "<< f_1e11 << "\n"
 "i_1e12 = "<< i_1e11 << "\n"
 "diff = "<< diff << '\n';
}

Qui donne le résultat :

 un_dixieme = 0.100000001490116119384765625
 f_1e12 = 99999997952
 i_1e12 = 100000000000
 diff = -2048

Les hexadécimaux permettent d’écrire la représentation exacte des virgules flottantes en s’affranchissant de ces erreurs d’arrondis.

La pratique

Passons à la pratique des fractions hexadécimales :

float v = 0xa.bp3f;
assert(v == 85.5f);

	0xA.B = 0xA*16^0 + 0xB*16^-1

	0xA = 10

	0x.B = 11/16 = 0,6875

	0xA.B = 10,6875

	p3 = 2^3 = 8

	v = 10,6875*8 = 85,5

	'f' final = type 'float'

double w = 0xC0DE2017.1CAFEp-1;
assert(w == 1617891339.55602931976318359375);

	0xC0DE2017 = 3235782679

	0x1CAFE = 117502

	0xFFFFF = 1048576

	p-1 = 2^-1 = 1/2

	w = (3235782679 + 117502/1048576) / 2

Concours

Chère lectrice, cher lecteur LinuxFr.org, as‐tu d’autres idées de jeux de mots avec cette notation hexadécimale ? Alors, défoule‐toi dans les commentaires. ;-)

Les plus beaux jeux de mots seront récompensés avec des cadeaux de la part de LinuxFr.org. Alors, tu as un peu de temps disponible aujourd’hui ? Fais comme les Nerdettes (les deux filles sur l’illustration), bogue du cerveau et propose ton code source de folie pour tenter de remporter un des lots.

Les modalités :

	les jeux de mots peuvent utiliser le nom des variables, la forme des caractères et symboles, les opérateurs ;

	il faut au moins un littéral hexadécimal à virgule flottante ;

	le code source doit pouvoir être compilable par un compilateur C++17 ;

	le code source doit être sous licence libre (licence de ton choix) ;

	les meilleures réponses seront sélectionnées parmi celles qui auront le plus de points « pertinents » et le moins de points « inutiles » ;

	la liste des gagnants sera diffusée quelques jours plus tard, dans une autre dépêche C++ ;

	les vainqueurs auront un livre à choisir parmi ceux des éditions Eyrolles et ENI ;

	réception des récompenses par courrier électronique postal.

Notation

Remarquez le p à la fin. Celui‐ci représente l’exposant binaire et il est suivi par un entier décimal (et non pas hexadécimal). Cet exposant binaire est obligatoire pour plusieurs raisons :

	il évite l’ambiguïté du f final dans 0xA.Bf (float ou le chiffre F hexadécimal ?) ;

	il évite l’ambiguïté du E dans 0xa.bE-12 (exposant -12 ou 0xA.BE - 12 ?) ;

	il correspond à la norme IEEE 754 (puissance de deux) ;

	100 % compatible avec la notation C99 (et celle d’autres langages).

Tentons de représenter cette notation hexadécimale en expression rationnelle :

	
0[xX][0-9a-fA-F]+[.]?[pP][+-]?[0-9]+[fFlL]? ;

	
0[xX][0-9a-fA-F]*[.][0-9a-fA-F]+[pP][+-]?[0-9]+[fFlL]?.

Termes du standard

Allez, soyons curieux, regardons comment le standard C++ spécifie cette notation avec un extrait du chapitre § 2.13.4 Floating literals du brouillon C++17 :

hexadecimal-floating-literal:

   hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-suffixopt

   hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-suffixopt
hexadecimal-fractional-constant:

   hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence

   hexadecimal-digit-sequence .
binary-exponent-part:

   p signopt digit-sequence

   P signopt digit-sequence
sign: one of

   + -
digit-sequence:

   digit

   digit-sequence ’opt digit
floating-suffix: one of

   f l F L

Et l’équivalent chez cppreference.com :

0x | 0X hex-digit-sequence
0x | 0X hex-digit-sequence .
0x | 0X hex-digit-sequence(optional) . hex-digit-sequence

Hexadecimal digit-sequence representing a whole number without a radix separator. The exponent is never optional for hexadecimal floating-point literals: 0x1ffp10, 0X0p-1, 0x1.p0, 0xf.p-1, 0x0.123p-1, 0xa.bp10l

The exponent syntax for hexadecimal floating-point literal has the form:
p | P exponent-sign(optional) digit-sequence

exponent-sign, if present, is either + or -

suffix, if present, is one of f, F, l, or L. The suffix determines the type of the floating-point literal:

	(no suffix) defines double

	f F defines float

	l L defines long double

Utilisation de strtof() et std::hexfloat

En attendant C++17, il est possible d’utiliser strtof() et std::hexfloat pour jouer avec les virgules flottantes hexadécimales :

#include <iostream>
#include <cstdlib>
#include <cstdio>
int main (int argc, char *argv[])
{
 if (argc != 2) {
 std::cout <<"Usage: "<< argv[0] <<" 0xA.Bp-1 => Decode hexfloat" "\n";
 return 1;
 }

 std::cout <<"Decode floating point hexadecimal = "<< argv[1];
 long double l = std::strtold(argv[1],NULL); if(errno==ERANGE)std::cout<<"\nstrtold() erreur";
 double d = std::strtod (argv[1],NULL); if(errno==ERANGE)std::cout<<"\nstrtod() erreur";
 float f = std::strtof (argv[1],NULL); if(errno==ERANGE)std::cout<<"\nstrtod() erreur";

 std::cout <<"\n" "long double = "<< std::defaultfloat << l <<'\t'<< std::hexfloat << l
 <<"\n" "double = "<< std::defaultfloat << d <<'\t'<< std::hexfloat << d
 <<"\n" "float = "<< std::defaultfloat << f <<'\t'<< std::hexfloat << f
 <<'\n';
}

Nous pouvons regretter qu’il faille utiliser des fonctions strtof() issues du C, qui imposent de vérifier si errno == ERANGE. En théorie, std::hexfloat devrait fonctionner pour l’entrée (istream). Mais dans la pratique std::hexfloat semble ne fonctionner que pour la sortie (ostream). L’exemple suivant ne fonctionne toujours pas avec GCC 6.2, Clang 3.9 et MSVC++15 :

double d;
std::istringstream iss("0xA.Bp-1");
iss >> std::hexfloat >> d;
std::cout << d;

Notons que c’est l’extraction qui ne s’effectue pas correctement. Le std::istringstream reste quand à lui dans un état correct, ainsi les erreurs sont vérifiables :

std::cout
 << std::boolalpha
 << iss.fail() << '\n' // false
 << iss.bad() << '\n' // false
 << iss.eof() << '\n' // false
 << iss.str() << '\n';// "0xA.Bp-1"

Réutilisation

Le texte de cette dépêche est protégé par le droit d’auteur la gauche d’auteur et réutilisable sous licence CC BY-SA 4.0. Les images utilisées sont aussi sous licence libre (cliquer sur l’image pour plus de détails).

Donc, n’hésitez pas à réutiliser ce contenu libre pour créer, par exemple, des supports de formation, des présentations (Meetups), des publications sur d’autres blogs, des articles pour des magazines, et aussi un article C++17 sur Wikipédia dès que Wikipédia passera de la licence CC BY-SA 3.0 à la CC BY-SA 4.0 (le contenu de cette dépêche utilise la version la CC BY-SA 4.0).

Les auteurs

Par respect de la licence, merci de créditer les auteurs :

	les principaux auteurs sont Adrien Jeser et Oliver H. ;

	les nombreux autres contributeurs ayant contribué sur l’ancêtre de cette dépêche ou sur le dépôt Git sont : eggman, Yves Bourguignon, Storm, gorbal, palm123, khivapia, BAud, Segfault, Benoît Sibaud, Lucas, cracky, Martin Peres, RyDroid, olibre et Guss.

Continuer à améliorer ce document

Malgré tout le soin apporté, il reste certainement des oublis, des ambiguïtés, des fôtes… Bien que cette dépêche restera figée sur le site LinuxFr.org, il est possible de continuer à l’enrichir sur le dépôt Git du Groupe des utilisateurs C++ francophone (C++FRUG). C’est donc sur ce dépôt que se trouvent les versions les plus à jour.   (ღ˘⌣˘ღ)

Alors que cet article restera figé sur le site LinuxFr.org, il continuera d’évoluer sur le dépôt Git. Merci de nous aider [à maintenir ce document à jour][md] avec vos questions/suggestions/corrections. L’idée est de partager ce contenu libre et de créer/enrichir des articles Wikipédia quand la licence sera CC BY-SA 4.0.   ٩(•‿•)۶

Appel à contribution

Nous nous efforçons de vous fournir une dépêche de qualité chaque jour ouvré. Et, en plus, avec une illustration sympathique. Mais cela demande beaucoup de travail, et tenir les délais n’est pas toujours simple.

Merci de nous donner un coup de main, que ce soit sur la correction orthographique, le dessin, la lecture des spécifications techniques, la rédaction d’une nouvelle dépêche à intégrer au calendrier de l’Avent du C++. Tu peux aussi apporter ta contribution à la dépêche Faut‐il continuer à apprendre le C++ ?

Rejoins‐nous sur la page du groupe de travail C++ sur LinuxFr.org (un compte est nécessaire pour y accéder).

À suivre…

Aller plus loin

	
1ᵉʳ décembre : « C++17 fixe l’ordre d’évaluation des expressions »
(206 clics)

	
2 décembre : « C++17 indique la disponibilité des en‐têtes »
(143 clics)

	
5 décembre : « C++17 branche à la compilation »
(169 clics)

	
Cette dépêche sur le dépôt Git du C++FRUG
(133 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections78.png
%

