

C++17 fixe l’ordre d’évaluation des expressions

Posté par Adrien Jeser le 01 décembre 2016 à 08:09.
Édité par Oliver, Davy Defaud, Benoît Sibaud et palm123.
Modéré par claudex.
Licence CC By‑SA.

Étiquettes :

	c++

	c++17

	cpp17

[image: C et C++]

Le C++ est un langage bien présent et depuis longtemps dans les logiciels libres (environnements de bureau, outils bureautiques, navigateurs Web…). L’an 2017 approche à grands pas avec la promesse d’un tout nouveau C++17.

Pour finir l’année, voici le calendrier de l’Avent du C++ avec des dépêches pédagogiques sur ce qui nous attend en 2017. Après deux dépêches de mise‐en‐bouche, nous entrons enfin dans le vif du sujet avec deux spécifications techniques concernant l’ordre d’évaluation des expressions. Allez, c’est parti !   ᕕ(ᐛ)ᕗ

[image: Bjarne propose de changer le C++ pour corriger son livre qu'il tient dans ses mains]

Sommaire

	Série de dépêches C++

	Spécifications Techniques

	Anecdote

	Explications

	Détails

	Autres exemples

	Conséquence

	Nouvelle règle

	Appel à participation

	Réutilisation

	Les auteurs

	Continuer à améliorer ce document

	La suite

Série de dépêches C++

Cette dépêche fait partie de toute une série disponible également sur le dépôt Git du Groupe des Utilisateurs C++ Francophone. Alors que cet article restera figé sur le site LinuxFr.org, il continuera d’évoluer sur le dépôt Git. Merci de nous aider à maintenir ce document à jour avec vos questions/suggestions/corrections. L’idée est de partager ce contenu libre et de créer/enrichir des articles Wikipédia quand la licence sera CC BY-SA 4.0.  

	Publication
	Dépêche

	20 août 2016
	Les coulisses du standard C++

	2 oct. 2016
	Genèse du C++17

	1ᵉʳ déc. 2016
	C++17 fixe l’ordre d’évaluation des expressions

	à venir…
	… d’autres dépêches …

	en 2017
	Faut‐il continuer à apprendre le C++ ?

Initialement, nous allions publier une grosse dépêche super trop longue. Puis, fin novembre, nous prenions conscience que les lecteurs apprécieraient plutôt une petite dépêche par jour, d’où l’idée de faire le calendrier de l’Avent du C++.   (ღˇ◡ˇ)~♥

Spécifications Techniques

Deux TS ont été amendés par le comité de normalisation du C++ afin de fixer l’ordre d’évaluation des expressions :

	
P0145 définit les changements nécessaires au standard C++ ;

	
P0400 reformule une phrase de cette précédente TS P0145.

Anecdote

Le livre mythique The C++ Programming Language de l’inventeur du C++, Bjarne Stroustrup contient une erreur subtile à la page 1046 du paragraphe 36.3.6 STL‐like Operations (quatrième édition publiée en 2013). Sauras‐tu la retrouver ? Voici l’extrait en question :

The replace() replaces one substring with another and adjusts the string’s size accordingly. For example:

void f()
{
 string s = "but I have heard it works even if you don't believe in it";
 s.replace(0,4,""); // erase initial "but "
 s.replace(s.find("even"),4,"only");
 s.replace(s.find(" don't"),6,""); // erase by replacing with ""
 assert(s=="I have heard it works only if you believe in it");
}

A replace() returns a reference to the object for which it was called. This can be used for chaining operations:

void f2()
{
 string s = "but I have heard it works even if you don't believe in it";
 s.replace(0,4,"").replace(s.find("even"),4,"only").replace(s.find(" don't"),6,"");
 assert(s=="I have heard it works only if you believe in it");
}

Pas trouvé ? Pas d’inquiétude, aucun humain n’avait trouvé cette erreur. Bien après la publication de ce livre, cette erreur a été trouvée, non pas par une nouvelle forme d’intelligence artificielle, mais juste par un outil d’analyse statique de code source au nez et à la barbe des pointures C++ aguerries.

Explications

Pour des questions de performance, le standard C++ (avant C++17) indique que c’est le compilateur qui optimise l’ordre d’évaluation du chaînage et des paramètres de fonction. Le standard utilise le terme unsequenced (séquencement non défini). Le C et le C++ partagent ensemble cette règle.

Donc, l’expression replace(find()).replace(find()) dans la fonction f2() peut être évaluée dans des ordres différents. En théorie, la variable s pourrait donc contenir différents résultats. Et c’est aussi le cas en pratique :

	Compilateur
	Résultat contenu par la variable s

	
GCC et MSVC

	I have heard it works evenonlyyou donieve in it

	LLVM/Clang
	I have heard it works only if you believe in it

Détails

Ci‐dessous, la première ligne déclare et initialise un objet std::string. La seconde ligne cherche et remplace plusieurs caractères de cette std::string en utilisant le chaînage des fonctions replace :

std::string s = "but I have heard it works even if you don’t believe in it";
s.replace(0,4,"").replace(s.find("even"),4,"only").replace(s.find(" don’t"),6,"");

Intuitivement, on s’attendrait à évaluer les arguments des fonctions comme find("even") juste avant d’appeler replace(resultat,4,"only"). Mais ce n’est pas le cas avant C++17, ces arguments peuvent être évalués dans différents ordres. Plus de détails sont donnés par Shafik Yaghmour (en anglais).

Le tableau ci‐dessous présente sur chacune des sept lignes, un ordre d’appel possible selon les standards C++ (avant C++17) et C (en supposant que ce soit une struct string avec des pointeurs de fonction) :

	1ᵉʳ appel
	2ᵉ appel
	3ᵉ appel
	4ᵉ appel
	5ᵉ appel

	find(" don’t")
	find("even")
	replace(0,4,"")
	replace(f,4,"only")
	replace(f,6,"")

	find("even")
	find(" don’t")
	replace(0,4,"")
	replace(f,4,"only")
	replace(f,6,"")

	find(" don’t")
	replace(0,4,"")
	find("even")
	replace(f,4,"only")
	replace(f,6,"")

	find("even")
	replace(0,4,"")
	find(" don’t")
	replace(f,4,"only")
	replace(f,6,"")

	replace(0,4,"")
	find(" don’t")
	find("even")
	replace(f,4,"only")
	replace(f,6,"")

	replace(0,4,"")
	find("even")
	find(" don’t")
	replace(f,4,"only")
	replace(f,6,"")

	replace(0,4,"")
	find("even")
	replace(f,4,"only")
	find(" do’'t")
	replace(f,6,"")

C++17 n’autorise qu’une seule possibilité, la dernière du tableau, et correspond à celle de la fonction f() du livre :

s.replace(0, 4, "");
s.replace(s.find("even"), 4, "only");
s.replace(s.find(" don't"), 6, "");

Autres exemples

Par exemple, dans l’expression f().g(h()) la fonction f() peut être appelée avant ou après h(). Le standard C++ fait la différence entre unspecified (non spécifié) et unsequenced (non séquencé). Ce comportement est bien spécifié, donc jusqu’à C++14, c’est unsequenced. À partir de C++17, c’est f() avant h() (sequenced before).

// Avant C++17, f() peut être appelée avant ou après h()
f().g(h());
// C++17 est plus intuitif : f() est toujours appelée avant h()

C’est aussi le cas de l’expression std::cout << f() << g() << h(); dont les trois fonctions peuvent être appelées dans n’importe quel ordre :

// Avant C++17, le compilateur décide l’ordre d’évaluation de f(), g() et h()
std::cout << f() << g() << h() << std::endl;
// C++17 fixe l’ordre intuitif : d’abord f(), puis g() et enfin h()

Encore d’autres exemples que le C++ partage avec le C :

std::map<int, int> m;
m[0] = m.size();
std::cout << m[0]; // Affiche 0 ou 1 ?
// Clang : 0
// GCC : 1
// MSVC++ : 0

int i = 0;
std::cout << i << ' ' << i++; // Affiche 0 0 ou 1 0 ?
// Clang : 0 0
// GCC : 1 0
// MSVC++ : 1 0

int i = 0;
i = i++ + 1; // unsequenced
std::cout << i; // Quelle valeur ?
// Clang : 1 mais avertit : multiple unsequenced modifications to 'i'
// GCC-6.2 : 1 mais avertit : operation on 'i' may be undefined

Ci‐dessus, pour toutes les versions du C++ et du C, l’opération est unsequenced et non pas undefined, comme GCC-6.2 le laisse supposer :

int i = 0;
i = ++i, i++, i++, ++i, ++i, ++i, i++;
std::cout << i; // Quelle valeur ?
// Piège, toujours 7 car c'est "sequenced before"
// GCC-6.2 avertit : operation on 'i' may be undefined

Notons que GCC-6.2 suppose encore que l’opération est undefined, alors que dans ce dernier cas l’opération est sequenced before, quelle que soit la version du C++ (et même du C).

Conséquence

Donc, de nombreux codes source sont potentiellement truffés de ces pièges, ce qui est également le cas quand std::future<T> est utilisé. Tout le monde se fait avoir, débutants comme experts. Et le comité de normalisation du C++ a donc amendé sans trop discuter ce TS, afin de fixer l’ordre d’évaluation dans certains cas.

Et c’est justement cet exemple du livre The C++ Programming Language qui illustre le paragraphe 5.2.2 Function call (page 107) du standard C++ (brouillon de juillet 2016).

Nouvelle règle

L’évaluation est :

	de la gauche vers la droite pour les expressions suffixées. Ceci inclut les appels de fonction et la section des membres ;

	l’affectation de la droite vers la gauche (a = b = c = d) ;

	les opérateurs de décalage (shift operators) de la gauche vers la droite.

En revanche, lorsqu’une surcharge d’opérateur est invoquée, la priorité arithmétique est utilisée.

Peut‐être que le code généré sera moins performant, et que les standards C et C++ divergent un peu plus, mais, au moins, le langage C++ devient un peu plus intuitif.

¯\(ツ)/¯

Appel à participation

La précédente dépêche a reçu 227 commentaires, soit un volume dix fois supérieur à la dépêche elle‐même. Tous ces commentaires cachent tout de même quelques joyeux trolls velus !

Quand on pense à toute cette énergie dépensée et toutes ces heures consacrées à rédiger ces 227 commentaires ! Avec le recul, nous aurions pu concentrer tout cet investissement dans une dépêche collaborative du style « Aujourd’hui, est‐il pertinent de choisir le C++ pour une nouvelle application ? ».

	[image: Panneau « Please Do Not Feed the Trolls »]
	[image: Panneau Troll barré]

	Ne pas nourrir les trolls
	Ne pas nourrir les trolls

Mais il n’est jamais trop tard ! Aussi nous proposons vous de rédiger la dépêche « Faut‐il continuer à apprendre le C++ ? » Les nombreux commentaires de la dépêche précédente méritent d’y être copiés. Malheureusement, ceux‐ci sont rarement sous licence compatible CC BY-SA 4.0. Ceci est donc un appel à tous leurs auteurs pour les copier dans cette dépêche afin de la nourrir. Ainsi, nous pourrons les structurer et proposer des réponses concises, claires et utiles à tous.

Merci et à vos claviers !  

Réutilisation

Le texte de cette dépêche est protégé par le droit d’auteur la gauche d’auteur et réutilisable sous licence CC BY-SA 4.0. Les images utilisées sont aussi sous licence libre (cliquer sur l’image pour plus de détails).

Donc, n’hésitez pas à réutiliser ce contenu libre pour créer, par exemple, des supports de formation, des présentations (Meetups), des publications sur d’autres blogs, des articles pour des magazines, et aussi un article C++17 sur Wikipédia dès que Wikipédia passera de la licence CC-BY-SA 3.0 à la CC-BY-SA 4.0 (le contenu de cette dépêche utilise la version la CC-BY-SA 4.0).

Les auteurs

Par respect de la licence, merci de créditer les auteurs :

	les principaux auteurs sont Adrien Jeser et Oliver H.’;

	les nombreux autres contributeurs ayant contribué sur l’ancêtre de cette dépêche ou sur le dépôt Git sont : eggman, Yves Bourguignon, Storm, gorbal, palm123, khivapia, BAud, Segfault, Benoît Sibaud, Lucas, cracky, Martin Peres, RyDroid, olibre et Guss.

Continuer à améliorer ce document

Malgré tout le soin apporté, il reste certainement des oublis, des ambiguïtés, des fôtes… Bien que cette dépêche restera figée sur le site LinuxFr.org, il est possible de continuer à l’enrichir sur le dépôt Git du Groupe des utilisateurs C++ francophone (C++FRUG). C’est donc sur ce dépôt que se trouvent les versions les plus à jour.   (ღ˘⌣˘ღ)

La suite

Nous venons de découvrir un changement important au niveau du langage. La dépêche suivante nous dévoilera une autre nouveauté du C++17.

Chère lectrice, cher lecteur LinuxFr.org. Tu souhaites apporter ta pierre à cet édifice ? Rejoins‐nous dans l’espace de rédaction collaborative sur LinuxFr.org (un compte est nécessaire pour y accéder).

À suivre…

Aller plus loin

	
Dépêche préliminaire dans « Les coulisses du standard C++ » (CC BY-SA 4.0)
(230 clics)

	
Dépêche de mise en bouche racontant la genèse du C++17 (CC BY-SA 4.0)
(166 clics)

	
Contenu markdown de cette dépêche sur le dépôt Git du C++FRUG
(151 clics)

	
Mars 2016 : Réunion pour dresser un premier contour du C++17 (Herb Sutter)
(123 clics)

	
Mars 2016 : Détail de cette même réunion du comité de normalisation du C++ (Botondballo)
(119 clics)

	
Juin 2016 : Réunion pour finaliser le périmètre C++17 (Herb Sutter)
(124 clics)

	
Liste concise des nouveautés C++17 sur StackOverflow (Yakk, CC BY-SA 3.0)
(159 clics)

	
Liste partielle des nouveautés C++17 sur MeetingC++ (Jens Weller)
(127 clics)

	
Article Wikipédia C++17 (CC BY-SA 3.0)
(158 clics)

	
Principaux apports des C++11/14/17 (Anthony Calandra, MIT)
(156 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/f9901f1060db53a39262793f97d7a8e6e270aefbe6cbbcce5560c7b1.png
La honte ! Lacl 1sco\l,ﬁ(iovm :
Ur

Moi, inventeur du C++ Moditier le.C++

j'ai vendu des livres Wo
avec un bogue ! e bouguin

Z{ON
A

corriger

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/b123fc7e25a29e896d7b2597c1e7869dc9f8f41e7d117ac6b8e59b6f.jpg
PLEASEDO'NOT
ED THE TROLLS

5 UNKIND AND UNNECESSARY

EPUB/imagessections78.png
%

