

C++17 garantit le court-circuit de copie (suite de la précédente dépêche)


Posté par Adrien Jeser le 13 décembre 2016 à 22:27.
Édité par Oliver, Davy Defaud, David Marec, Snark, Benoît Sibaud et lmg HS.
Modéré par bubar🦥.
Licence CC By‑SA.

Étiquettes :

	c++

	c++17











[image: C et C++]



Le calendrier de l’Avent du C++ continue son bonhome de chemin. Chaque jour, ou presque, une nouvelle surprise est offerte aux lecteurs de LinuxFr.org. La dépêche sur l’élision de la copie nous a mis l’eau à la bouche :



Comment résoudre le dilemme entre cette optimisation et le fait de ne pas pouvoir en bénéficier dans un code portable ?




Alors, entrons dans les entrailles de la spécification technique P0135 guidés par cette dépêche pédagogique, et découvrons comment le C++ s’améliore de version en version.


[image: Une fille nerd s’électrocute en touchant la nouvelle tour C++17 de sa voisine avec garantie de court-circuit de copie]

Sommaire


	La problématique

	L’astuce de la TS P0135

	Une taxonomie des expressions ?

	Une taxonomie contre‐intuitive

	Redéfinir pour garantir l’élision de copie

	Et les xvalues ?

	Conclusion

	Réutilisation

	Les auteurs

	Continuer à améliorer ce document

	Appel à contribution


La problématique


Nous avons vu dans la dépêche C++ se court‐circuite le constructeur de copie, les problèmes de l’élision du constructeur de copie.


En effet, cette optimisation est optionnelle : selon le compilateur, sa version, ses options de compilation, ou encore selon le code source, l’élision sera appliquée ou pas.


Donc, dans un code portable, de façon générale, nous ne pouvons pas nous passer des constructeurs de copie et de déplacement, car l’élision pourrait ne pas avoir lieu. Cela interdit aux types indéplaçables d’avoir des fonctions qui retournent par valeur, telles que les fabriques.


int n; // compte le nombre d’appels du constructeur de copie

struct A
{
  A(int) {}
  A(const A&) { ++n; }
};

int main()
{
  A a = A( A( A( A(42) ) ) );
  return n; // valeur non déterminée avant C++17
}           // toujours 0 avec C++17

L’astuce de la TS P0135


La spécification technique P0135 ne rend pas obligatoire l’élision. Pour la garantir, cette TS redéfinit la taxonomie des expressions dans le but d’éviter toute création inutile d’objet temporaire. Le cas des Named Return Value Optimizations n’est pas concerné par cette spécification technique, faute de pouvoir apporter une garantie simple.

Une taxonomie des expressions ?


La taxonomie est la science du classement, pour identifier et décrire le vivant. Un taxon est un groupe d’organismes classés ensemble parce qu’ils ont des caractéristiques communes. Comme des poupées russes, un taxon peut contenir un sous‐ensemble plus petit de taxons. Voir aussi le documentaire Espèces d’espèces.


Le C++ reprend ce principe pour classer ses expressions. La classification historique (C++98) définit deux taxons : lvalue et rvalue.


À l’origine, ces termes ont été choisis car, dans les cas simples, le lvalue se trouve à gauche (left value) et le rvalue (right value) se trouve à droite. Mais cette disposition n’est pas toujours vraie.


left_value = right_value;

  \               \        

   `--se trouve    `--se trouve

      à gauche        à droite



Chacun des taxons a des propriétés spécifiques. Par exemple, seul lvalue peut être la cible d’une affectation.


[image: Taxonomie C++98]


Note : La norme définit un objet comme une zone mémoire pouvant contenir des données.

Une taxonomie contre‐intuitive


La taxonomie du C++11 a inscrit la nouvelle catégorie xvalue, nécessaire pour la sémantique de déplacement (move semantics). Ce qui a rendu l’évaluation des expressions C++ plus confuse et difficile à s’approprier :




	Taxon
	Caractères discriminants




	lvalue
	Désigne une fonction ou un objet



	xvalue
	Un objet proche de la fin de vie et certains types d’expressions impliquant des références rvalue




	rvalue
	Une xvalue, un objet temporaire, un sous‐objet ou une valeur pas associé avec objet.



	prvalue
	Une rvalue qui n’est pas une xvalue




	glvalue
	Taxon supérieur d’une lvalue et xvalue





Ainsi, il y a des contradictions dans de nombreux cas. Par exemple, une expression qui crée un objet temporaire est une rvalue. Alors que selon les critères discriminant, elle aurait pu tout aussi bien être une lvalue.


Autre paradoxe, une expression qui construit un objet puis accède à un membre, telle que A().a est une xvalue. En effet, l’objet construit A() expire à la fin de l’évaluation de l’expression. Or, dans une situation où il est indéplaçable, c’est contradictoire avec une xvalue, ce qui sous‐entend être déplaçable. Donc, elle devrait être une prvalue. On y perd son latin !


Ci‐dessous, un schéma très simplifié, pour mieux comprendre ce classement :


[image: Taxonomie C++11]

Redéfinir pour garantir l’élision de copie


La spécification technique propose de faire la distinction entre les expressions prvalue et glvalue. Désormais, une glvalue définit la localisation d’un objet, une prvalue son initialisation :




	Taxon
	Caractères discriminants




	glvalue
	Identifie une fonction, un objet, un champ de bits



	prvalue
	Initialise un objet, un champ de bits



	xvalue
	une glvalue dont la ressource peut être réutilisée



	lvalue
	Une glvalue qui n’est pas une xvalue




	rvalue
	Une prvalue qui n’est pas une xvalue





[image: Taxonomie C++17]


struct X { int n; };
extern X x;
X{4};   // prvalue car initialise un objet temporaire X
x.n;    // glvalue car localise l'attribut n de x
X{4}.n; // glvalue car localise l'attribut n de X{4}

using T = X[2]; 
T{{5}, {6}};    // prvalue car initialise un tableau de X


Si une prvalue est utilisée pour initialiser un objet de même type, il le sera directement. Par conséquent, l’initialisation de la valeur de retour d’une fonction avec un temporaire entraîne l’initialisation directe de la valeur, sans copie, ni déplacement. Cela signifie que le constructeur de copie ou de déplacement de l’objet n’a plus besoin d’être défini.


struct NonDeplacable {
  NonDeplacable(int);
  NonDeplacable(NonDeplacable &)  = delete;
  NonDeplacable(NonDeplacable &&) = delete;
  std::array<int, 1024> arr;
};

NonDeplacable make() {
  return NonDeplacable(42); // Construit directement l'objet renvoyé
}

auto nm = make(); // Construit directement l'objet renvoyé dans 'nm'

NonDeplacable x = {5}; // Ok avant C++17
NonDeplacable x = 5;  // Équivaut à NonDeplacable x = NonDeplacable(5)
                      // Erreur avant C++17 parce qu'il crée un objet non déplaçable 
                      // Maintenant, plus d'erreur


Ce changement est sans conséquence pour l’optimisation Named Return Value Optimization (NRVO). Comme mentionné précédemment, la modification implique seulement les prvalues. Avec la NRVO, la valeur retournée est une glvalue.


A f()
{  
  A a;
  return a; // Retourne une glvalue
}           // Donc sans garantie d'élision

int main()
{
  A a = f();
}

Et les xvalues ?


La définition d’une xvalue gagne en clarté. Désormais, elle désigne une expression dont la ressource (les données) peut être réutilisée. Ce qui correspond bien à un objet déplaçable, dont ses données peuvent être réutilisées dans un autre objet.


Dernier changement, le compilateur est autorisé à convertir l’initialisation d’un objet temporaire (prvalue) vers une xvalue.


struct X { int n; }
int k = X().n; // X() est une prvalue convertie en xvalue.

Conclusion


Nous venons d’aborder un sujet complexe du C++. Nous pourrions trouver le C++ beaucoup trop compliqué. Mais cette dépêche a montré que le standard se simplifie. Un standard C++ plus compréhensif, de meilleures optimisations et un code plus intuitif. Que demander de plus ?

Réutilisation


Le texte de cette dépêche est protégé par le droit d’auteur la gauche d’auteur et réutilisable sous licence CC BY-SA 4.0. Les images utilisées sont aussi sous licence libre (cliquer sur l’image pour plus de détails).


Donc, n’hésitez pas à réutiliser ce contenu libre pour créer, par exemple, des supports de formation, des présentations (Meetups), des publications sur d’autres blogs, des articles pour des magazines, et aussi un article C++17 sur Wikipédia dès que Wikipédia passera de la licence CC BY-SA 3.0 à la CC BY-SA 4.0 (le contenu de cette dépêche utilise la version la CC BY-SA 4.0).

Les auteurs


Par respect de la licence, merci de créditer les auteurs :



	les principaux auteurs sont Adrien Jeser et Oliver H. ;

	les nombreux autres contributeurs ayant contribué sur l’ancêtre de cette dépêche ou sur le dépôt Git sont : eggman, Yves Bourguignon, Storm, gorbal, palm123, khivapia, BAud, Segfault, Benoît Sibaud, Lucas, cracky, Martin Peres, RyDroid, olibre et Guss.


Continuer à améliorer ce document


Malgré tout le soin apporté, il reste certainement des oublis, des ambiguïtés, des fôtes… Bien que cette dépêche restera figée sur le site LinuxFr.org, il est possible de continuer à l’enrichir sur le dépôt Git du Groupe des utilisateurs C++ francophone (C++FRUG). C’est donc sur ce dépôt que se trouvent les versions les plus à jour.   (ღ˘⌣˘ღ)


Alors que cet article restera figé sur le site LinuxFr.org, il continuera d’évoluer sur le dépôt Git. Merci de nous aider à [maintenir ce document à jour][md] avec vos questions, suggestions et corrections. L’idée est de partager ce contenu libre et de créer et enrichir des articles Wikipédia, quand la licence sera CC BY-SA 4.0.   ٩(•‿•)۶

Appel à contribution


Nous nous efforçons de vous fournir une dépêche de qualité chaque jour ouvré. Et, en plus, avec une illustration sympathique. Mais cela demande beaucoup de travail, et tenir les délais n’est pas toujours simple.


Merci de nous donner un coup de main, que ce soit sur la correction orthographique, le dessin, la lecture des spécifications techniques, la rédaction d’une nouvelle dépêche à intégrer au calendrier de l’Avent du C++. Tu peux aussi apporter ta contribution à la dépêche Faut‐il continuer à apprendre le C++ ?


Rejoins‐nous sur la page du groupe de travail C++ sur LinuxFr.org (un compte est nécessaire pour y accéder).


À suivre…

Aller plus loin


	
1ᵉʳ décembre « C++17 fixe l’ordre d’évaluation des expressions » 
(239 clics)


	
2 décembre « C++17 indique la disponibilité des entêtes »
(149 clics)


	
5 décembre « C++17 branche à la compilation »
(150 clics)


	
7 décembre « C++17 exprime la virgule flottante en hexadécimal »
(146 clics)


	
11 décembre « C++ se court-circuite le constructeur de copie »
(240 clics)


	
Spécification Technique P0135 sur la garantie de court-circuit du constructeur de copie
(124 clics)









EPUB/imageslogoslinuxfr2_mountain.png





EPUB/02311ab231a7b742a91b5cd4e8d64f5f0ee0e471cf4b48667364d16b.png
Expression

Du/ Non

ghvalue rvalue
Ny \om oui won
Walue xvalue prvalue|
struct A { o
int Une xvalue est créée si

AG& operator+(A, Al
inti=[a+a

Lappel dune fonction (explicite ou_ implicite)
retoume une référence rvalue d'un oblet.

Accés d'un membre de classe désignant une
donnée non-statique dans lequel lexpression de
Objet est une xvalue

EEmoUEa e Conversion vers une référence rvalue d'un objet





EPUB/365f1899260d68eb50e8807e1f83dfe76ccf2987f6e4c7f88ba67b60.png
Expression

AN

Wvalue rvalue
struct Object {};
Précisions
int[A
Si la valeur retrounée est une
int function() { return[Dl- référence, alors Cest une value.
ints function_ref() { retum[f- Sinon c'est une rvalue.

int main() {

Object BB
_  ele nom de la fonction est une
] - [T Walue. Par contre, la valeur

retrournée est une rvalue.

Une Ivalue peut étre convertie en
rvalue. A condition de pas étre
une fonction ou un tableau.






EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/63a0e8b94b6a66e4fe4ef1bbe0b5ea32443fd96412b2a163336d3b01.png
C'est quoi ta  Crest la version ,l/’l/ .du court—circuit
nouvelle tour ?  C++17 et ca clest £V du constructeur
par copie,

C'est quai ca ?  la gavanfie du. /NCX”
10L08 17 Bidn
s Has

0






EPUB/0a6fb3480360bf84deb180d5ed88ba4a05e1562d22b5b6d1c051eb62.png
Expression

Identifie une fonction, un objet, un champ de bits

Ou/ Non

[givalue | rvalue
L@ ressource peut étre réutilisée 7

my \:)m m/ Non

[xvatue] [prvalue|






EPUB/imagessections78.png
%





