

C++17 indique la disponibilité des en‐têtes (header)

Posté par Adrien Jeser le 02 décembre 2016 à 09:36.
Édité par Davy Defaud, Benoît Sibaud, claudex, ZeroHeure, Bruno Michel et Nils Ratusznik.
Modéré par bubar🦥.
Licence CC By‑SA.

Étiquettes :

	c++

	c++17

[image: C et C++]

Chaque jour de décembre a droit à sa surprise. Après l'ordre d'évaluation, aujourd'hui, le calendrier de l’Avent du C++ présente la Spécification Technique P0061 concernant une macro magique : #define __has_include.

[image: Une personne déprime de ne plus rien comprendre au C++ et son collègue le rassure que LinuxFr.org publie le calendrier de l'Avent du C++ avec des explications pédagogiques]

Sommaire

	Série de dépêches C++

	Spécification Technique

	La macro

	Dépendance optionnelle

	Roue de secours

	Faut‐il continuer à apprendre le C++ ?

	Réutilisation

	Les auteurs

	Continuer à améliorer ce document

	La suite

Série de dépêches C++

Cette dépêche fait partie de toute une série disponible également surle dépôt Git du Groupe des utilisateurs C++ francophone.

	Publication
	Dépêche

	20 août 2016
	Les coulisses du standard C++

	2 oct. 2016
	Genèse du C++17

	1ᵉʳ déc. 2016
	C++17 fixe l’ordre d’évaluation des expressions

	2 déc. 2016
	C++17 indique la disponibilité des entêtes (header)

	à venir…
	… d’autres dépêches …

	en 2017
	Faut‐il continuer à apprendre le C++ ?

Initialement, nous allions publier une grosse dépêche super trop longue. Puis, fin novembre, nous nous sommes ravisés et nous vous proposons plutôt une petite dépêche par jour, d’où l’idée du calendrier de l’Avent du C++.   (ღˇ◡ˇ)~♥

Spécification Technique

La macro __has_include est dans les cartons depuis plusieurs années. Le comité de normalisation du C++ a intégré cette fonctionnalité en amendant le TS P0061.

La macro

La macro __has_include() vérifie si l’en‐tête est disponible pour inclusion.

#if __has_include(<filesystem>)
include <filesystem>
#elif __has_include(<experimental/filesystem>)
include <experimental/filesystem>
#elif __has_include(<boost/filesystem.hpp>)
include <boost/filesystem.hpp>
#else
error Ne trouve aucune en-tête filesystem
#endif

Dépendance optionnelle

Sans cette fonctionnalité, le code source avait moins de possibilités de s’adapter automatiquement à l’environnement de compilation. Pour les dépendances optionnelles, l’outil de compilation (autotools, CMake…) devaient détecter la présence de telle ou telle dépendance et passer au compilateur des macros pour activer ou désactiver des parties du code source.

Et sans cette complexité en amont, il est difficile de proposer du code C ou C++ qui gère des dépendances optionnelles : si l’en‐tête (header) d’une dépendance est absent, le compilateur arrête la compilation, car le code source tente d’inclure l’en‐tête introuvable de cette dépendance, même si la dépendance est optionnelle.

Chère lectrice, cher lecteur LinuxFr.org, tu as peut‐être un exemple pertinent en tête.

Tu souhaites déplacer la complexité de l’outil de compilation vers le code source ?

Fais‐nous part de tes idées dans les commentaires.

L’exemple ci‐dessous illustre l’utilisation de la macro __has_include(), mais aurait aussi pu se baser sur la détection de macros comme WIN32, _WIN64 ou MSCVER :

#if __has_include(<windows.h>)
include <windows.h>
 LONGLONG ticks1nano = []() {
 LARGE_INTEGER freq;
 QueryPerformanceFrequency(&freq);
 return freq.QuadPart / 1000'000;
 }();
 LONGLONG nanosecondes() {
 LARGE_INTEGER time;
 QueryPerformanceCounter(&time);
 return time.QuadPart/ticks1nano;
 }
#elif __has_include(<time.h>)
include <time.h>
 auto nanosecondes() {
 struct timespec ts;
 clock_gettime(CLOCK_MONOTONIC,&ts);
 return 1000'000'000 * ts.tv_sec + ts.tv_nsec;
 }
#else
error Ne trouve ni <windows.h> ni <time.h>
#endif

L’exemple suivant utilise également la macro __has_include().

C’est une possibilité pour une implémentation multi‐plate‐forme du futur Networking TS.

#if __has_include(<winsock2.h>)

#include <winsock2.h>

struct WindowsSocketImpl : AbstractSocket
{
 // implémentation Windows
};

using MySocket = WindowsSocketImpl;

#else

#include <sys/socket.h>

struct UnixSocketImpl : AbstractSocket
{
 // implémentation Unix
};

using MySocket = UnixSocketImpl;

#endif

// Usage
AbstractSocket * socket = new MySocket();

Roue de secours

Nous pouvons aussi imaginer l’utilisation de cette macro __has_include() pour sélectionner la bibliothèque à utiliser selon la disponibilité de différentes alternatives :

#if __has_include(<optional>)

#include <optional>
using MyOptional = std::optional;

#elif __has_include(<experimental/optional>)

#warning Utilise std::experimental::optional à la place de std::optional
#include <experimental/optional> // roue de secours
using MyOptional = std::experimental::optional;

#elif __has_include(<boost/optional.hpp>)

#warning Utilise boost::optional à la place de std::optional
#include <boost/optional.hpp> // roue de secours secondaire
using MyOptional = boost::optional;

#else
error Ne trouve ni <optional>, ni <experimental/optional>, ni <boost/optional>
#endif

Faut‐il continuer à apprendre le C++ ?

	[image: Panneau « Please Do Not Feed the Trolls »]
	[image: Panneau Troll barré]

	Ne pas nourrir les trolls
	Ne pas nourrir les trolls

Merci de nous aider à structurer et consolider les différentes idées sur cette question dans l’espace de rédaction collaboratif de LinuxFr.org : Faut‐il continuer à apprendre le C++ ?

Réutilisation

Le texte de cette dépêche est protégé par le droit d’auteur la gauche d’auteur et réutilisable sous licence CC BY-SA 4.0. Les images utilisées sont aussi sous licence libre (cliquer sur l’image pour plus de détails).

Donc, n’hésitez pas à réutiliser ce contenu libre pour créer, par exemple, des supports de formation, des présentations (Meetups), des publications sur d’autres blogs, des articles pour des magazines, et aussi un article C++17 sur Wikipédia dès que Wikipédia passera de la licence CC BY-SA 3.0 à la CC BY-SA 4.0 (le contenu de cette dépêche utilise la version la CC BY-SA 4.0).

Les auteurs

Par respect de la licence, merci de créditer les auteurs :

	les principaux auteurs sont Adrien Jeser et Oliver H. ;

	les nombreux autres contributeurs ayant contribué sur l’ancêtre de cette dépêche ou sur le dépôt Git sont : eggman, Yves Bourguignon, Storm, gorbal, palm123, khivapia, BAud, Segfault, Benoît Sibaud, Lucas, cracky, Martin Peres, RyDroid, olibre et Guss.

Continuer à améliorer ce document

Malgré tout le soin apporté, il reste certainement des oublis, des ambiguïtés, des fôtes… Bien que cette dépêche restera figée sur le site LinuxFr.org, il est possible de continuer à l’enrichir sur le dépôt Git du Groupe des utilisateurs C++ francophone (C++FRUG). C’est donc sur ce dépôt que se trouvent les versions les plus à jour.   (ღ˘⌣˘ღ)

Alors que cet article restera figé sur le site LinuxFr.org, il continuera d’évoluer sur le dépôt Git. Merci de nous aider à maintenir ce document à jour avec vos questions/suggestions/corrections. L’idée est de partager ce contenu libre et de créer/enrichir des articles Wikipédia quand la licence sera CC BY-SA 4.0.   ٩(•‿•)۶

La suite

La dépêche suivante nous dévoilera une autre nouveauté du C++17.

Chère lectrice, cher lecteur LinuxFr.org. Tu souhaites apporter ta pierre à cet édifice ? Rejoins‐nous dans l’espace de rédaction collaborative sur LinuxFr.org (un compte est nécessaire pour y accéder).

À suivre…

Aller plus loin

	
Dépêche préliminaire dans « Les coulisses du standard C++ » (CC BY-SA 4.0)
(544 clics)

	
Dépêche de mise en bouche racontant la genèse du C++17 (CC BY-SA 4.0)
(453 clics)

	
Dépêche du 1ᵉʳ décembre « C++17 fixe l’ordre d’évaluation » (CC BY-SA 4.0)
(153 clics)

	
Contenu markdown de cette dépêche sur le dépôt Git du C++FRUG
(118 clics)

	
Spécification Technique P0061 « `__has_include` for C++17 »
(127 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/09e94480a8161593e117320144cadb9c1f8a8dd4e5177189b4b6546c.png
Tu déprimes ? J“S ﬁme\vgf chg‘xgﬂef'q Mais non, pour expliguer

Peclagoqnq,uemen’f le C++17
Je ne. compvends "Avent du C'H'

)'(,f& pus Hen au C++ \ Q\i/ﬂ

A @\ -F Chq{u‘eﬂe !
' c 'o ion
" o tat miews ngrnma'*e RN i

AVANT avant ¢

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/b123fc7e25a29e896d7b2597c1e7869dc9f8f41e7d117ac6b8e59b6f.jpg
PLEASEDO'NOT
ED THE TROLLS

5 UNKIND AND UNNECESSARY

EPUB/imagessections78.png
%

