

Crux 3.1: une distribution KISS à la saveur BSD

Posté par Rolinh (site web personnel) le 25 juillet 2014 à 12:44.
Édité par palm123, Xavier Teyssier et rootix.
Modéré par rootix.
Licence CC By‑SA.

Étiquettes :

	crux

[image: Distribution]

Crux est disponible dans sa version 3.1 depuis le 16 juillet dernier. Cette distribution, qui a été la principale source d'inspiration à la création d'Arch Linux, suit le principe KISS (keep it simple), dispose d'un système d'init à la BSD ainsi que d'un système de [ports]. C'est une distribution légère ciblant l'architecture x86-64 et des utilisateurs Linux avancés.

Crux, dont la première version date de décembre 2002, n'est basée sur aucune autre distribution et possède ses propres outils pour, par exemple, la gestion des paquets et ports.

Plus d'informations se trouvent dans la suite de la dépêche.

Sommaire

	Scripts d'initialisation

	Ports et paquets

	Description: Compression utility using the lzma algorithm, successor of lzma-utils

	
URL: http://tukaani.org/xz/

	Maintainer: CRUX System Team, core-ports at crux dot nu

	Installation

	Changements dans la version 3.1

Scripts d'initialisation

Les utilisateurs de systèmes *BSD ne devraient pas être trop dépaysés par Crux. En effet, point de systemd ici mais un système d'init à la BSD.

Le système comporte plusieurs runlevels, tels que définis dans /etc/inittab:

	0: halt

	1: mode utilisateur unique

	2: mode multi-utilisateur

	3-5: non utilisés

	6: reboot

Le script de démarrage système est défini dans /etc/rc alors que celui pour l'extinction se trouve dans /etc/rc.shutdown et l'initialisation des modules passe par /etc/rc.modules. Le script pour le mode utilisateur unique dans /etc/rc.single, pour le mode multi-utilisateur dans /etc/rc.multi.

La configuration de base du système se fait via /etc/rc.conf et les scripts des services, par exemple sshd, se trouve dans /etc/rc.d.

Ports et paquets

Le système de paquets utilise des simples tarballs tar.gz, sans métadonnées. Cependant, l'extension .pkg.tar.gz est utilisée afin de permettre de différencier un paquet d'un simple tarball. Les paquets peuvent également être compressés avec bzip2 ou encore xz et dans ce cas là, l'extension est changée en accord (.pkg.tar.bz2 et .pkg.tar.xz).

Les paquets s'installent et se mettent à jour via pkgadd(8), se désinstallent via pkgrm(8) et peuvent se créer via pkgmk(8) tandis que pkginfo(8) permet l'obtention d'informations sur les paquets.

Ce système de paquets simple ne supporte pas, par exemple, la résolution des dépendances. En revanche, un front-end, prt-get(8), est fourni avec le système et permet notamment la résolution des dépendances.

Crux comprend également un système de ports que l'on peut trouver dans /usr/ports. Un port comprend les fichiers Pkgfile, .md5sum et .footprint. Le Pkgfile est en réalité un script shell spécial qui permet la création d'un paquet, un peu à la manière d'un PKGBUILD chez Arch Linux. Un exemple valant mieux que mille mots:

```

Description: Compression utility using the lzma algorithm, successor of lzma-utils

URL:         http://tukaani.org/xz/


Maintainer:  CRUX System Team, core-ports at crux dot nu


name=xz

version=5.0.5

release=1

source=(http://tukaani.org/xz/$name-$version.tar.bz2)


build() {

    cd $name-$version

    ./configure --prefix=/usr \

                --mandir=/usr/man \

                --disable-nls 

    make

    make DESTDIR=$PKG install


ln -s liblzma.so.$version $PKG/usr/lib/liblzma.so.0

rm -r $PKG/usr/share



}

``Le fichier.md5sumsert donc à stocker la somme md5 du (des) tarball(s) nécessaire(s) à la création du paquet tandis que le fichier.footprint` contient la liste des fichiers et dossiers créés par le port. Évidemment, si des patches ou fichiers de configuration sont nécessaires, ils prendront également leur place dans le dossier du port en question.


Il faut noter que les paquets sont réduits au strict minimum. Ainsi, les fichiers de traduction ne sont pas installés, de même que les fichiers de documentation tels des README, fichiers *.info ou *.html, etc. Seules les pages de manuels sont conservées comme documentation.


L'arbre des ports se synchronise via l'utilitaire ports(8). Ainsi, une mise à jour de son système peut être réalisée simplement via un ports -u && prt-get sysup.


Le noyau Linux est une exception. En effet, il n'existe pas de port pour le noyau Linux. Les sources du noyau se trouvent par défaut dans /usr/src. Par exemple, la version 3.1 de Crux fournit les sources du noyau Linux 3.12 dans /usr/src/linux-3.12.24. L'installation du noyau passe donc par un procédé standard:


$ cd /usr/src/linux-3.12.24

$ make menuconfig

$ make all

$ make modules_install

$ cp arch/x86/boot/bzImage /boot/vmlinuz

$ cp System.map /boot


Pour une mise à jour du noyau, il suffit donc de télécharger les sources depuis kernel.org, de copier le fichier de configuration du noyau et de lancer un make oldconfig suivi d'un make all && make modules_install && make install.


Étant donné que le noyau n'est pas géré par pkgadd(8), il est tout à fait possible de télécharger et installer le noyau de son choix sans rendre la base de données des paquets inconsistante. Par ailleurs, cela n'affecte pas non plus les headers kernel qui se trouvent dans /usr/include/linux et /usr/include/asm étant donné que ceux-ci ne sont pas des liens symboliques vers les sources du kernel mais contiennent une copie des headers.

Installation


Concernant l'installation, point de GUI ou de superflu. Le média d'installation est une image ISO hybride pouvant autant être gravée sur un CD-ROM qu'utilisée pour créer une clé USB amorçable. Une fois démarré sur le média d'installation, l'utilisateur se trouve connecté en tant que root et peut donc procéder à l'installation du système.


Le partitionnement se fait généralement via fdisk(8) suivit d'un mkfs(8). Une fois cela fait, il faut monter la (ou les) partition(s) nouvellement créée(s), par exemple dans /mnt et lancer la commande setup. Cette dernière permet d'installer les paquets nécessaires au système, notamment les paquets de core. Une fois cela effectué, il faut créer un chroot pour finir la configuration de son système. Cela peut se faire de manière traditionnelle mais la commande setup-chroot permet d'automatiser le processus. Une fois dans le chroot, l'utilisateur doit donc définir un mot de passe pour le super-utilisateur, éditer /etc/fstab afin de configurer les systèmes de fichiers, éditer /etc/rc.conf pour configurer le système de base tel que la timezone, le layout du clavier ou encore le hostname et les services à lancer au démarrage. La configuration du réseau passe par l'édition des fichiers /etc/rc.d/net, /etc/hosts et /etc/resolv.conf.

Une fois ceci fait, il est nécessaire de configurer et installer son kernel, tels que décrit dans la section précédente. À noter qu'un fichier .config générique est fourni de base pour simplifier le processus.

Le gestionnaire de démarrage de base par défaut est lilo. Pour autant que l'utilisateur le choisisse, il doit passer par l'édition de /etc/lilo.conf afin de rendre son système démarrable.

Changements dans la version 3.1


La toolchain utilise glibc 2.19.0, gcc 4.8.3 et binutils 2.24.


Le kernel par défaut est le kernel à support à long terme 3.12.24. À noter que depuis la disponibilité de Crux 3.1, la version 3.12.25 est disponible et une mise-à-jour du noyau est donc conseillée.


À noter également que udev a disparu au profit de eudev.


Les détails peuvent se trouver dans les notes de mise à jour ainsi que dans le changelog.

Aller plus loin


	
Homepage
(705 clics)


	
Handbook de la version 3.1
(77 clics)


	
Notes de version
(37 clics)









EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/imagessections83.png





