

Découverte de l’outil de supervision Prometheus

Posté par yannig (site web personnel) le 31 janvier 2018 à 10:43.
Édité par Davy Defaud, BAud, Benoît Sibaud, palm123, Nÿco, ZeroHeure, dovik, Nicolas Casanova et C138.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	supervision

	prometheus

	elasticsearch

	grafana

	debian

[image: Supervision]

Par le passé, j’ai été un grand utilisateur de Nagios et ses différents forks. J’avais pour habitude de le coupler avec un PNP4Nagios pour obtenir de jolies courbes sur les métriques remontées par mes greffons de surveillance. J’ai également commencé à utiliser l’outil Beats d’Elastic.

[image: Prometheus]

Pour diverses raisons, j’ai arrêté d’utiliser ces outils, pour passer sur une stack très différente basée sur Prometheus et Grafana.

Sommaire

	Un peu de contexte

	
Découverte de Prometheus : principe de fonctionnement
	
Principe de fonctionnement du stockage Prometheus
	Présentation des données à stocker

	Stockage par double delta

	Pour aller plus loin

	
Prometheus server
	Installation du serveur Prometheus

	Configuration du serveur Prometheus

	
Jobs exporter
	Installation d'un node exporter

	Installation d’un node exporter

	Configuration de Prometheus

	
Web UI : découverte de Grafana
	Installation de Grafana

	Interfaçage avec Prometheus

	Ajout d’un dashboard

	Définition d’alertes

	
Alertmanager
	Installation

	Configuration du gestionnaire d’alertes

	Branchement sur Prometheus

	Pour conclure

Un peu de contexte

Pour diverses raisons, j’ai eu de nouveau à gérer la mise en place d’une surveillance pour des plates‐formes d’intégration ainsi que pour une plate‐forme servant principalement à faire du benchmark. Là encore, j’aurais pu ressortir mes scripts de suivi sous Nagios couplé à PNP4Nagios, me tourner vers un Cacti ou encore me mettre à Zabbix. Un autre candidat intéressant était la suite Beats d’Elastic.

Sauf que tous ces outils ne m’emballaient pas et avaient tous un défaut :

	Nagios, PNP4Nagios et Cacti étaient clairement vieillots (avec ça, je vais me faire des amis) ;

	je ne connaissais pas Zabbix mais je n’avais pas envie de m’y mettre (même si l’on m’en avait dit du bien) ;

	Enfin, même si Beats d’Elastic est relativement intéressant, j’ai de plus en plus tendance à trouver Elasticsearch lourdaud et grand consommateur de ressource (grâce notamment à la légèreté de Java).

Bref, je trouvais que ces outils restaient en deçà de ce qu’on pourrait attendre d’une stack de supervision moderne. Autre point relativement contraignant : une intégration toujours complexe à réaliser alors que la tendance est plutôt vers des outils de moins en moins intrusifs (je suis un grand consommateur d’Ansible pour cette raison).

C’est donc dans cet état d’esprit que je m’apprêtais à mettre en place Beats d’Elasticsearch. Un peu par hasard, j’ai entendu parler de Prometheus et devant l’enthousiasme de la personne qui m’en parlait, j’ai décidé d’y jeter un coup d’œil.

Découverte de Prometheus : principe de fonctionnement

Avant de passer à la mise en place de Prometheus, attardons‐nous sur l’architecture de ce logiciel :
[image: https://prometheus.io/assets/architecture.svg]

Dans les éléments qui vont particulièrement nous intéresser, nous retiendrons les briques suivantes :

	
Prometheus server : c’est le moteur permettant de stocker les métriques collectées ;

	
Jobs exporters : il s’agit d’agents sur lesquels Prometheus viendra collecter les différentes métriques ;

	
Web UI : restitution des métriques à l’utilisateur ;

	
Alertmanager : gestionnaire d’envoi des alertes aux utilisateurs.

Principe de fonctionnement du stockage Prometheus

Prometheus utilise un stockage spécifique pour ses métriques. De ce stockage découlent les atouts et inconvénients de ce moteur. Avant la version 2, il existait trois formats v0, v1 et v2 (ce n’est plus le cas depuis la version 2). Dans la suite, nous reviendrons sur cette évolution et en quoi elle permet d’en retirer des avantages.

Au niveau de ce stockage, certains aspects ne seront pas abordés comme, par exemple, la structure des tampons utilisés ou l’écriture sur disque. Si vous voulez une description un peu plus poussée, vous pouvez vous tourner vers la présentation de Fabian Reinartz : Time Series in Prometheus (sur Slideshare.net).

Le format de cette base de données est spécifique (série temporelle ou time series dans la langue de Shakespeare) et diffère de celui qu’on pourrait retrouver dans une base de données classique (SQL ou NoSQL). En effet, les données collectées ont des caractéristiques connues :

	collecte de métrique à intervalle connu (toutes les 60 secondes) ;

	similarité des données d’une collecte sur l’autre (généralement, l’espace disque des partitions sur un serveur ne change pas).

Du fait de ces caractéristiques, Prometheus compresse les données en mémoire et sur disque. Il en résulte une bien meilleure utilisation des ressources mémoire, processeur et disque.

Présentation des données à stocker

Chaque collecte de métrique ramènera un groupe de métriques. Ces métriques seront toutes associées à une date stockée sous la forme d’un entier représentant le nombre de millisecondes écoulées depuis le 1er janvier 1970. Chaque métrique sera représentée sous la forme d’un chiffre à virgule flottante de type float64.

Ci‐dessous un exemple de valeurs que nous allons stocker dans le moteur Prometheus :

	  Métrique  
	   Horodatage   
	Valeur

	http_requests_total
	 1434317560938
	1500

	http_requests_total
	 1434317562939
	1520

	http_requests_total
	 1434317564939
	1531

	http_requests_total
	 1434317566945
	1554

Stockage par double delta

Comme on peut le voir, les données ont comme caractéristiques d’être collectées à intervalles réguliers (ici, environ toutes les deux secondes) et d’avoir des valeurs proches d’une collecte à une autre. Afin de réduire la place prise par les données, il est possible de ne stocker que le delta de ces mesures.

Ainsi, une première façon de réduire la place prise par ces données est de les stocker sous la forme d'un delta :

	Métrique
	 Delta horodatage
	Valeur

	http_requests_total
	 1434317560938
	 1500

	http_requests_total
	 +2001
	 +20

	http_requests_total
	 +2000
	 +22

	http_requests_total
	 +2006
	 +20

Lors de la première mesure, l’horodatage consommera bien huit octets (un entier sur 64 bits). La donnée quant à elle consommera huit octets (Prometheus stocke toutes ses valeurs au format float64), soit 16 octets au total.

Dans le cas de l’horodatage, le delta pourra être stocké sous forme d’un entier de longueur variable fonction du delta avec la valeur précédente.

Pour le stockage de la métrique, le moteur fait appel à un ou exclusif (opération XOR) pour comparer l’ancienne et la nouvelle valeur. En fonction de ce résultat, le moteur stockera une représentation compressée de la différence constatée. Si ça n’est pas possible, le moteur utilisera une valeur sur huit octets.

Mais en réalité, Prometheus fait appel à un stockage par double delta. Le principe est simple : pour la première mesure, il utilise un stockage brut, pour la seconde mesure, il fait la différence par rapport à la première mesure et toutes les autres mesures sont stockées par rapport au delta du delta de la valeur précédente. Ci‐dessous le stockage que nous obtenons avec le jeu de données :

	Métrique
	Delta delta horodatage
	 Valeur

	http_requests_total
	 1434317560938
	 1500

	http_requests_total
	 +2001
	 +20

	http_requests_total
	 +-1
	 ++2

	http_requests_total
	 ++6
	 +-2

Sur une grande quantité de données, cet algorithme permet de réduire l’espace consommé pour arriver à une moyenne de l’ordre de 1,37 octet par échantillon de métrique (au lieu des 16 octets initiaux).

Pour aller plus loin

Cette technique de stockage par mots de longueurs variables est similaire à celle décrite dans un papier sur l’outil Gorilla (produit interne de FaceBook). Ci‐après, le lien vers le PDF de l’article en question : http://www.vldb.org/pvldb/vol8/p1816-teller.pdf.

Prometheus server

Ce processus a en charge la collecte à intervalles réguliers de l’état des différents exporters. Il stocke les métriques collectées dans sa base de données et peut ensuite être interrogé au travers de son API (via HTTP).

Un autre rôle du serveur Prometheus est d’évaluer à intervalles réguliers les définitions d’alertes. Ces dernières s’appuient sur l’état des métriques internes collectées.

Installation du serveur Prometheus

Les inconditionnels de Docker pourront lancer l’installation à l’aide de la commande suivante :

docker run -p 9090:9090 prom/prometheus

Pour les personnes ayant toujours recours à des machines système classiques, vous devrez récupérer l’archive de Prometheus à depuis le site Web du projet. Vous aurez ensuite à :

	
décompresser l’archive avec la commande suivante :

tar xfvz prometheus-2.0.0.linux-amd64.tar.gz

	
lancer Prometheus de la manière suivante :

./prometheus-2.0.0.linux-amd64/prometheus --config.file=prometheus-2.0.0.linux-amd64/prometheus.yml

La console Prometheus est maintenant joignable à l’URL suivante : http://localhost:9090.

Configuration du serveur Prometheus

Tel que vous l’avez lancé dans le précédent paragraphe, Prometheus sera configuré par défaut afin de scruter son propre état. Si vous souhaitez gérer sa configuration, vous aurez besoin d’alimenter un fichier au format YAML.

Si ce fichier est disponible à l’emplacement ~/prometheus.yml, vous devrez relancer votre conteneur Docker avec la commande suivante :
docker run -p 9090:9090 -v ~/prometheus.yml:/etc/prometheus/prometheus.yml prom/prometheus

Pour un lancement classique, la commande sera la suivante :
./prometheus-2.0.0.linux-amd64/prometheus --config.file=~/prometheus.yml

Jobs exporter

Autre élément important de l’architecture : les sources de données à collecter.

Pour cela, Prometheus offre des exporters prêts à l’emploi. Parmi ceux‐ci, le node exporter est particulièrement intéressant. Ce dernier se charge d’exporter énormément de métriques système, que ça soit pour des machines physiques ou virtuelles. On y retrouve indifféremment :

	les informations sur l’activité processeur (au processeur près) ;

	la consommation de la ressource mémoire ;

	l’activité des disques (% d’attente, nombre d’entrées‐sorties par seconde, nombre de mégaoctets par seconde en lecture et écriture) ;

	l’activité des interfaces réseau ;

	enfin, sur les machines physiques, des indications comme par exemple la température des processeurs.

En réalité, il y a tellement de métriques à disposition (comme par exemple l’état de l’entropie du système) qu’il serait difficile de tout détailler.

À noter qu’il existe également des exporters pour certains produits connus du marché, comme par exemple HAProxy, Apache ou encore MySQL.

L’installation d’un node exporter se réalise en deux phases :

	décompression des binaires sur la machine à superviser et lancement de l’agent ;

	déclaration au niveau du serveur Prometheus de l’instance à scruter.

Installation d'un node exporter

Installation d’un node exporter

L’installation est assez classique. Il faut tout d’abord récupérer l’archive de l’exporter sur https://prometheus.io/download/ [lien direct].

Décompresser ensuite l’archive avec la commande suivante :
tar xfvz node_exporter-0.15.2.linux-amd64.tar.gz

Le node se lance ensuite de la manière suivante :
./node_exporter-0.15.2.linux-amd64/node_exporter

Configuration de Prometheus

Une fois que le node exporter est lancé, il est maintenant temps de l’indiquer à Prometheus. Afin que cet ajout soit le plus souple possible, ajouter la section suivante dans le fichier prometheus.yml (au niveau du champ scrape_configs) :

scrape_configs:
[...]
 - job_name: 'node'
 file_sd_configs:
 - files: ["/etc/prometheus/nodes/*.yml"]
[...]

Créez le répertoire jobs :
mkdir -p /etc/prometheus/nodes

Avec cette directive, Prometheus sera en mesure de scruter le contenu du répertoire /etc/prometheus/nodes et d'ajouter automatiquement à sa configuration tous les fichiers .yml qui y seront déposés. Dans le cas présent, ajoutez le fichier /etc/prometheus/nodes/localhost.yml avec le contenu suivant :

- targets: ["localhost:9100"]
 labels:
 # Vous pouvez ajouter ce que vous voulez pour taguer la machine
 host: "localhost"

Dès la création du fichier, Prometheus charge ce fichier et commence sa collecte.

Web UI : découverte de Grafana

Par défaut, Prometheus offre à l’utilisateur une interface de restitution. Mais cette dernière est assez rudimentaire (elle est surtout là pour de la mise au point). Les auteurs conseillent de s’appuyer sur l’interface Grafana qui est bien plus avancée de ce point de vue.

Installation de Grafana

Grafana est disponible au téléchargement à l’emplacement suivant : https://grafana.com/grafana/download.

Une fois Grafana téléchargé, l’installation se fait avec yum ou dpkg.

Ci‐dessous l’instruction pour Debian :

wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana_4.6.3_amd64.deb
sudo dpkg -i grafana_4.6.3_amd64.deb

Et la même chose pour Red Hat ou CentOS :

wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-4.6.3-1.x86_64.rpm
sudo yum localinstall grafana-4.6.3-1.x86_64.rpm

Il est également possible de récupérer une archive TAR compressée avec GZIP seule. En effet, comme Prometheus, Grafana est écrit en Go et, par conséquence, n’a pas de dépendance au niveau système.

Une fois installé, il faut démarrer la console avec la commande suivante :
systemctl start grafana

L’utilisateur peut maintenant se connecter sur l’adresse URL de Grafana : http://localhost:3000

Si vous souhaitez activer Grafana au démarrage, lancez la commande suivante :
systemctl enable grafana

Interfaçage avec Prometheus

Une fois sur l’interface de Grafana, authentifiez‐vous en tant qu’administrateur (compte admin, mot de passe admin).

Seconde étape : la configuration d’une source de données. Au niveau des champs, vous pourrez rentrer les valeurs suivantes :

	Name : nom de la connexion (ex : Prometheus) ;

	Type : choisir Prometheus ;

	URL : rentrer http://localhost:9090 ;

	Access : laisser la valeur proxy.

Laissez les autres champs à la valeur par défaut et cliquez sur Add.

Ajout d’un dashboard

La source de données est maintenant configurée. En revanche, il n’y a aucun tableau de bord. La bonne nouvelle est que vous en avez de nombreux disponibles prêts à l’emploi à l’adresse suivante : https://grafana.com/dashboards.

Parmi ces tableaux de bords, Node Exporter Full permet de récupérer toutes les métriques remontées par les nodes exporter de Prometheus. Il est consultable à l’adresse suivante : https://grafana.com/dashboards/1860.

L’installation est réalisée par l’écran d’importation de Grafana en saisissant l’identifiant du dashboard (ici 1860). En cas de problème d’ouverture de flux (avec un serveur mandataire), il est possible de télécharger le dashboard au format JSON, pour ensuite le téléverser sur via interface de Grafana.

Une fois le dashboard créé, vous devriez obtenir les graphiques suivants :
[image: Capture d’écran du dashboard]

Définition d’alertes

Tout est en place pour la collecte et la restitution des données. Il faut maintenant définir des alertes afin de les remonter auprès des différents opérateurs. Première chose, il faut modifier la configuration de Prometheus afin de lui faire charger des règles permettant de générer des alertes. Ci‐dessous la déclaration à rattacher au niveau du champ global :

Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
 - /etc/prometheus/rules/node.rules.yml

Créez également le fichier /etc/prometheus/rules/node.rules.yml en y mettant les éléments suivants :

	une variable groups avec une liste de règles ;

	pour chaque règle les champs name et rules ;

	pour chaque enregistrement de rules, la définition d’une alerte.

Une alerte pourra faire appel à différents champs. Parmi ces derniers, vous pouvez retenir ceux‐ci :

	le champ alert, avec le nom de cette dernière ;

	le champ expr, avec une requête permettant de déclencher l’alerte ;

	le champ for, pour indiquer au bout de combien de temps vous considérez que l’alerte est caractérisée ;

	enfin, les champs labels et annotations peuvent apporter des informations supplémentaires sur l’alerte (nom du système de fichiers, nom du serveur, petite phrase pour donner une procédure permettant de rétablir le service, etc.).

Ci‐dessous quelques exemples d’alertes pour une surveillance des machines :

groups:
- name: Alerts nodes
 rules:
 - alert: DiskWillFillIn4Hours
 expr: predict_linear(node_filesystem_free{job="node"}[1h], 4 * 3600) < 0
 for: 5m
 labels:
 severity: critical
 annotations:
 title: '{{ $labels.mountpoint }} is almost full on {{ $labels.instance }}: {{ $value | humanize }}%'
 - alert: NoDiskSpace
 expr: node_filesystem_avail{fstype=~"(ext.|xfs)",job="node"} / node_filesystem_size{fstype=~"(ext.|xfs)",job="node"} * 100 <= 1
 for: 15m
 labels:
 severity: critical
 annotations:
 description: There's only 1% disk space left on host {{ $labels.instance }}
 title: 'No disk space left on {{ $labels.mountpoint }} on {{ $labels.instance }}: {{ $value | humanize }}%'
 - alert: HighInodeUsage
 expr: node_filesystem_files_free{fstype=~"(ext.|xfs)",job="node"} / node_filesystem_files{fstype=~"(ext.|xfs)",job="node"} * 100 <= 20
 for: 15m
 labels:
 severity: critical
 annotations:
 description: '{{ $labels.mountpoint }} inodes are running low. Please consider removing file.'
 title: 'Free inodes on $labels.instance }} on mountpoint {{ $labels.mountpoint }} is at {{ $value | printf "%.2f" }}%'
 - alert: ExtremelyHighCPU
 expr: instance:node_cpu_in_use:ratio > 0.95
 for: 2h
 labels:
 severity: critical
 annotations:
 description: 'CPU use percent is extremely high on {{ $labels.instance }} for the past 2 hours.'
 title: 'CPU use percent is extremely high on {{ $labels.instance }} for the past 2 hours.'
 - alert: HighCPU
 expr: instance:node_cpu_in_use:ratio > 0.8
 for: 2h
 labels:
 severity: critical
 annotations:
 description: 'CPU use percent is extremely high on {{ $labels.instance }} for the past 2 hours.'
 title: 'CPU use percent is high on {{ $labels.instance }} for the past 2 hours.'

En se rendant dans la console de Prometheus sur le lien Alerts, vous obtiendrez toutes les alertes définies et la liste des exporters en erreur.
[image: Exemple d’alerte dans la console Prometheus]

Alertmanager

Ce processus aura en charge de restituer auprès des équipes en charge des serveurs l’arrivée de nouveaux événements.

Installation

Tout comme pour la partie serveur de Prometheus, vous pouvez démarrer le gestionnaire d’alertes avec la commande :
docker run -p 9093:9093 prom/alertmanager

Pour les autres, vous allez devoir :

	
récupérer l’archive d’alertmanager (actuellement en version 0.13.0) :

wget https://github.com/prometheus/alertmanager/releases/download/v0.13.0/alertmanager-0.13.0.linux-amd64.tar.gz

	
décompressez‐la avec la commande suivante :

tar xfvz alertmanager-0.13.0.linux-amd64.tar.gz

	
enfin, le lancement du gestionnaire d'alerte se fait avec les commandes suivantes :

cd ./alertmanager-0.13.0.linux-amd64 ./alertmanager --config.file=simple.yml

Le fichier simple.yml est un exemple de configuration.

Configuration du gestionnaire d’alertes

Le gestionnaire d’alertes est très ouvert au niveau de ses capacités de communication. Vous pouvez envoyer des courriels ou des messages vers Slack pour notifier l’arrivée de nouvelles alertes.

Ci‐dessous un exemple de configuration mettant en place l’envoi des notifications vers Slack :

[...]
The root route on which each incoming alert enters.
route:
 # On envoie tout vers slack par défaut
 receiver: slack
[...]
receivers:
- name: 'slack'
 slack_configs:
 - api_url: "https://hooks.slack.com/services/xxx/xxx/xxxxxx"
 channel: '#prometheus'
[...]

Dès que Prometheus envoie une alerte, cette dernière est poussée vers Slack sur le canal #prometheus afin d’être prise en compte par les différentes équipes.

Branchement sur Prometheus

Dernier point : brancher le serveur Prometheus sur le gestionnaire d’alertes avec la configuration suivante à ajouter dans le fichier prometheus.yml :

Alertmanager configuration
alerting:
 alertmanagers:
 - static_configs:
 - targets:
 # À adapter en fonction du serveur gestionnaire d’alertes
 - localhost:9093

Un redémarrage du serveur sera nécessaire pour la prise en compte. Ceci fait, les alertes devraient commencer à arriver sur le canal de communication.

Pour conclure

Le tour du propriétaire est maintenant terminé. À vous de jouer !

Aller plus loin

	
Time series in Prometheus (SlideShare.net)
(798 clics)

	
Projet Prometheus
(1342 clics)

	
Téléchargement de Prometheus
(221 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/83701cc5063f5378910070827e6cae387d8562cc65a556344365e539.png
Prometheus

Alerts

InsufficientPeers (1 active)

ALERT InsufficientPeers
IF count(up{job="etcd"} == @) > (count(up{job="etcd"}) / 2 - 1)
FOR 3m
LABELS {severity="page"}
ANNOTATIONS {description="If one more etcd peer goes down the cluster will be unavailable", summary="Etcd cluster small"}

State Active Since Value Silence

Labels
1

FIRING 2016-08-18 08:37:37.807 +0000 UTC

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/adbaa95f3a9348767bf512c05f2b24ad274a1890e3b1fae2b0dca5ee
— System - Processes executing in kernel mode
User - Normal processes executing in user mode
— Nice - Niced processes executing in user mode

" Idie - Waiting for something to happen

lowait - Waiting for /0 to complete:
— Irq - Servicing interrupts.
— Softirq - Servicing softirgs

cPU

— Steal - Time spent in other operating systems when running in a virtualized environment

‘Guest - Time spent running a virtual CPU for a guest operating system

15 MBps.

10 MBps.

5MBps

oBps

5MEps

-10 MBps.

15 MBps.

20 MBps.

25 MiBps.

200

etho receive.
eth1 receive.
lo receive.
etho transmit
eth1 transmit
Io transmit

0200

Network Traffic

10:00 1200 1400

min
4kBps
708ps
oBps
4kBps
oBps
0Bps

min
013
020

%007

16:00
1269 MBps
255 iBps.

oBps
21.97 MBps
11.98 MBps

oBps

5293
7487

19933
7387
013
17.93
o

o

avg
899
2533
o
15094,
on
000
795
o

o

1800
avg

472 iBps.
1.18 MBps
oBps
221 Bps.
446 MBps.
oBps

2000

current
720
807

o
17080
o

o

1080

o

o

2000
current
636 MiBps.
1,45 MBps
oBps
1.74 MBps
605 MiBps.
oBps

Memory Stack
3G
2868
2368
1968
1468
954 M
a77vis
o8

200 o000 o200 0400 0600 0800 1000 1200 1400 1600 1800 2000

min max g cument

— Apps - Memory used by user-space applications 247IMB H4416MIB 25BI1MIB 26081 MB

PageTables - Memory used to map betuween virtual and physical memory addresses. 201MB 3ssME 248MiE 259ME

— SwapCache - Memory that keeps track of pages that have been fetched from swap but ot yet been modified. o8 o8 o8 08

Siab - Memory used by the kel to cache data structures for its own Use (caches like inod, dentry, et 10343MiE 10E2MB 12961 MB 13313MiB

Cache - Parked il data (le conten) cache. 13268 250GB 238GB 249G

— Buffers - Block device (e, hardlisk cache. 197MB 1545MiB SESMIB 436MiE

" Unused - Free memory unasigned G.7MB 127G 18225MB T284Mi

— Swap - Swap space used. o8 o8 o8 o8

— Hanware Corrupted - Amount of RAM that the kernel dentified as corupted / not working o8 o8 o8 o8

100%

20%

0200

=

arflog,

Disk space Used

10:00

1200 1400 16:00 1800 2000
min max avg currenta

2B8ETH 417 03K 32210%

70333% 88.127% 76515% 78.885%

EPUB/imagessections82.png

