

Démarche qualité et Logiciel Libre

Posté par Lucas le 08 février 2005 à 23:17.

Modéré par jerome.

Étiquettes :

	humeur

[image: Communauté]

Grâce à leur énorme base d'utilisateurs-testeurs, les Logiciels Libres sont d'une qualité bien supérieure aux logiciels propriétaires. Cette idée répandue est généralement fausse. Dans la pratique, de nombreux logiciels libres sont aussi, voire plus bogués que des logiciels propriétaires.

La suite plus bas ...
Dans le monde du Libre, deux comportements sont fréquents parmi les développeurs :

- Les hardcore programmers : "Je peux écrire 1000 lignes de code d'un seul jet, et ça marche direct. Les tests, c'est pour les losers qui savent pas coder."

- Les extrémistes du modèle de développement Open Source : "Des tests ? Pour quoi faire ? C'est mes utilisateurs qui les font !"

Comme pour la documentation, on touche ici à une des limites du Logiciel Libre : les développeurs sont pour une grande majorité bénévoles, et ne veulent pas s'embêter avec tout ce qui n'est pas fun : documentation, tests, ...

Dans le monde propriétaire, les méthodes de développement intègrent les tests au développement du logiciel. eXtreme Programming (XP), par exemple, prône l'utilisation intensive de tests, et notamment de tests unitaires. XP recommande même d'écrire les tests avant le code à tester.

Mais la plupart des logiciels libres ignorent totalement cette démarche, et se basent sur une démarche qualité incomplète basée sur des Bug Tracking Systems ou Bugzillas : les bugs remontés ainsi sont en général les bugs les plus apparents, mais un bug bien enfoui peut rester non corrigé pendant des lustres. Ce bug très gênant de gconfd est un bon exemple : un bug dans un algorithme de gestion d'arbre présent depuis GNOME 2.0 (juin 2002), signalé fin septembre 2004, corrigé début février.

Et même si un développeur de Logiciels Libres voulait tester son code, avec quoi le ferait-il ? Les ateliers de test libres sont rares (je ne connais que DejaGNU) et peu utilisés, sauf pour quelques projets plutôt faciles à tester (Binutils, Coreutils, Glibc, GCC, uclibc ...). Du côté des langages de script, c'est un peu mieux : beaucoup de programmes Perl sont livrés avec une suite de test et Python a PyUnit (mais est-ce vraiment utilisé par les développeurs ?). Ruby, langage pour XP par excellence, se démarque : l'interpréteur est testé par le rubicon (un vrai jeu de mots d'informaticiens au passage : Ruby doit passer le Rubicon...), et les tests unitaires sont largement utilisés par les développeurs.

Alors que les logiciels propriétaires populaires deviennent de plus en plus robustes (loin est le temps où Windows plantait sans arrêt), il est important d'augmenter la qualité des Logiciels Libres. Cela passe par l'utilisation massive de techniques ayant fait leurs preuves dans l'industrie, mais mal maîtrisées dans la communauté.

On peut aussi se poser une question plus profonde : Alors qu'avec Perl, Python, Ruby et C#, nous avons des langages permettant de développer efficacement des applications de haut-niveau, pourquoi continuer à développer majoritairement en C/C++, avec lesquels il est nettement plus facile d'introduire des bugs ? Pourquoi ne pas limiter l'utilisation de ces langages aux bibliothèques ?

Qu'en pensez-vous ? Testez-vous vos applications ? Avec quoi ?
Aller plus loin

	
Une présentation de DejaGNU
(29 clics)

	
Test unitaire sur Wikipedia
(30 clics)

	
Unit Test sur Wikipedia (plus complet)
(10 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections9.png

