

Deno 2.0 est là

Posté par sbillois (site web personnel) le 04 décembre 2024 à 08:25.
Édité par Benoît Sibaud, cli345, FrancoisA30, gnoucat2, Julien Jorge, Pierre-Alain TORET, Pierre Tramal, Arkem, bobble bubble et orfenor.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	nodejs

	javascript_engine

	deno

	rust

[image: JavaScript]

Le temps où Node.js régnait en maître comme la solution incontournable pour exécuter du code JavaScript côté serveur est-il révolu ? En tout cas, il a aujourd’hui des challengers de taille comme Bun (qui pourrait lui aussi mériter une dépêche) ou Deno. C'est donc de ce dernier qu'il sera question dans cette dépêche, à l'occasion de la sortie de sa version 2.0

Sommaire

	

	Pour rappel

	La mascotte !

	Deno 1.x, des débuts difficiles !

	Les nouveautés de la version 2.0

	Autour du projet Deno, JavaScript Registry (JSR) un dépôt de paquets JavaScript universel !

	
Performances du runtime
	
Test sur un MacBook Pro (2,6 GHz Intel Core i7 6 cœurs, AMD Radeon Pro 5300M 4 Go Intel UHD Graphics 630 1536 Mo, 16 Go 2667 MHz DDR4) sous macOS Sonoma
	Node: Le temps moyen pour exécuter le test de 126 millisecondes

	Deno: Le temps moyen pour exécuter le test de 93 millisecondes

	Performances du gestionnaire de paquets

	Deno 2.1 est là

	Conclusion

[image: Titre de l'image]

Pour rappel

Deno est un runtime JavaScript et TypeScript. Il a vu le jour suite au constat de Ryan Dahl (créateur aussi de Node.js), que Node avait des problèmes de conceptions, et qu'il était nécessaire de repartir de zéro en tenant compte de l'expérience de Node pour ne pas refaire les mêmes erreurs. Il imagine Deno comme un runtime avec un modèle de sécurité par défaut plus strict. Les programmes Deno n'ont pas accès au système de fichiers, au réseau ou à l'environnement, sauf si on leur accorde explicitement ces permissions. Deno est écrit en Rust, et se base sur le moteur JavaScript V8 de Google. Deno se distingue également de Node en offrant la possibilité d'importer les dépendances via des URL, mettant en cache chaque module lors de l’importation pour améliorer la vitesse d’exécution.

La mascotte !

La première chose notable quand on passe de Node.js à Deno, c'est sa mascotte ! En effet, même si Node.js possède bien une petite tortue comme mascotte, celle-ci n'est utilisée nulle part ! Personnellement, j'ai toujours trouvé bien plus chouettes les projets qui ont des petites bestioles comme mascotte (Mozilla, Tux …). Et chez Deno, le dinosaure mascotte est omniprésent sur tout le site. Et en plus, à l'occasion de la version 2.0, on peut habiller notre dino sur la home page du projet ! Et ça c'est cool ! Voici le mien, qui est en compagnie de Ferris, la mascotte officieuse de Rust !

[image: Mon dino]

Bon, comme je ne suis pas sûr que tout le monde partage ma passion pour les mascottes, on va passer au côté plus technique ! 🤣

Deno 1.x, des débuts difficiles !

La version 1.0 sortie en mai 2020 a du mal à se faire une place et reste dans l'ombre de son grand frère. En effet, même si Deno offre un grand lot de nouveautés et est plus sécurisé par défaut, la très large adoption de Node et le fait que les projets développés pour Node ne sont pas forcément compatibles avec Deno rend l’adoption de ce dernier difficile. De plus, l'utilisation de CDN plutôt que d'installer les dépendances localement (dans le répertoire node_modules) a certes de nombreux avantages, mais cela rend votre projet dépendant de disponibilité du réseau ou peut entraîner des problèmes de performances si le CDN est éloigné géographiquement.

Les nouveautés de la version 2.0

Deno est désormais 100% compatible avec Node.js, et un gestionnaire de paquets officiel a vu le jour. Vous pouvez maintenant utiliser deno add et deno removepour ajouter ou retirer un paquet à votre projet.

Autour du projet Deno, JavaScript Registry (JSR) un dépôt de paquets JavaScript universel !

Le registre NPM s'est construit autour de Node.js afin de gérer facilement les dépendances de nos projets. Il a donc été développé pour Node.js à une époque où Node était la seule solution pour exécuter du code JavaScript côté serveur. En près de 15 ans, le registre NPM a rassemblé un peu moins de 3 millions de paquets et a très largement rempli sa mission toutes ces années. Mais aujourd'hui, la situation a changé, il existe plusieurs runtimes pouvant exécuter du code JavaScript (ou TypeScript) côté serveur. Et du côté front-end, les frameworks se sont multipliés et sont devenus de plus en plus complexes et nécessitent aussi l'utilisation d'un gestionnaire de paquets. Un registre de paquets fondé autour de Node.js uniquement est donc beaucoup moins pertinent qu'en 2010.

C'est donc pourquoi, à l'initiative du projet Deno, un nouveau registre de paquets JavaScript et TypeScript universel pointe aujourd'hui le bout de son nez. Il s'agit donc de JSR (JavaScript Registry).

Dans JSR, quand on va sur la page d'un paquet, en haut à droite, on a les logos des environnements compatibles avec le paquet :

[image: Titre de l'image]

Performances du runtime

Niveau performance, ça donne quoi ?

On voit souvent l'affirmation que Deno serait plus rapide que Node.js. Mais ça donne quoi en réalité ?

J'ai voulu faire un petit test sans prétentions pour voir ce que ça donne. Je voulais faire des tests plus poussés sur différents systèmes d'exploitation et architectures, mais par manque de temps, le test sera donc fait sur un seul système et un seul ordinateur et il s'agit d'un Mac… Un comble pour LinuxFr.org, mais c'est l'ordinateur que j'avais à disposition à ce moment-là. Mais sinon, je ne porte pas spécialement Apple dans mon cœur, bien au contraire !

J'ai testé l’exécution d'une même API sur Node. et Deno pour voir les différences de performance entre ces solutions. Pour ce test, j'ai utilisé une API Rest que j'ai développée pour le site de la société AudioSoft. J'ai fait la même requête POST 10 fois sur la même route avec les mêmes données. Il est important de préciser que c'est la première fois que je fais ce genre de tests, et que je ne fais peut-être pas tout dans les règles de l'art. Il y a des éléments extérieurs à Node et Deno qui peuvent influencer les scores. Notamment, la base de données utilisée pour le test était accessible via Internet, et des différences de débit ont pu fausser les tests.

Test sur un MacBook Pro (2,6 GHz Intel Core i7 6 cœurs, AMD Radeon Pro 5300M 4 Go Intel UHD Graphics 630 1536 Mo, 16 Go 2667 MHz DDR4) sous macOS Sonoma

Node: Le temps moyen pour exécuter le test de 126 millisecondes

Deno: Le temps moyen pour exécuter le test de 93 millisecondes

Performances du gestionnaire de paquets

Comme dit précédemment, Deno c'est aussi un gestionnaire de paquets. J'ai donc trouvé intéressant de tester les principaux gestionnaires de paquets sur différents environnements.

Pour ce test je me base sur la même API Rest que pour le test précédant, les dépendances à installer pour cette API sont : bcrypt, body-parser, dotenv, express, jsonwebtoken, mariadb, multer, mysql2, nodemailer, et sequelize. Le test a été fait sur un MacBook Pro. Pour effectuer ce test, le cache des gestionnaires de paquets ont été nettoyés et les fichiers-verrous supprimés.

Avec NPM, l'installation a mis 10 secondes.

Avec Deno, l'installation a mis 1 seconde.

Avec Bun, l'installation a mis 3 secondes.

On voit très clairement que NPM est beaucoup plus lent que ses deux concurrents. L'écart est plus faible entre Deno et Bun. Mais Deno est bien le plus rapide des trois.

Avant de réaliser ce test, j'en ai effectué un en oubliant de nettoyer le cache et de supprimer package-lock.json. Les résultats étaient alors 8 secondes pour NPM, 5 secondes pour Deno et 4 secondes pour Bun. Il est logique de constater que NPM est plus rapide, en revanche, je trouve surprenant que Deno et Bun aient été ralentis. Il est possible que les gestionnaires de paquets aient parcouru package-lock.json pour garder les versions présentes dans ce fichier, ce qui les aurait tous les trois ralentis. Et NPM a peut-être pu bénéficier de son cache (car je l'utilise bien plus que les deux autres sur mon ordinateur), Deno et Bun eux n'avaient peut-être pas grand-chose dans leurs caches, ont donc été ralentis. Il est donc important de supprimer les lockfile en cas de migration d'un projet.

Comme je le disais plus haut, c'est la première fois que j'effectue ce genre de test comparatif. Si vous avez des conseils sur les bonnes méthodes pour faire des tests plus fiables, ça m’intéresse !

Deno 2.1 est là

Étant donné que j'ai mis environ un siècle pour rédiger cette dépêche, Deno 2.1 est sortie entre temps ! 🤣

Je vous liste donc les principales nouveautés apportées à la version 2.1 sans les commenter 😉

	Support natif de WebAssembly (Wasm) : Il est désormais possible d'importer directement des modules Wasm, simplifiant leur utilisation et améliorant les performances.

	Version Long Term Support (LTS) : Deno 2.1 inaugure la première version LTS, garantissant des correctifs de bugs et des améliorations de performance pendant… Six mois… On n'est pas encore aux 30 mois des versions LTS de Node.js… Cela viendra peut-être plus tard. 🙂

	Commande deno init --npm vite : Cette commande simplifie la création de nouveaux projets en utilisant des outils comme Vite, en automatisant l'initialisation et en réduisant la configuration manuelle.

	Gestion des dépendances : Introduction de la commande deno outdated pour gérer les mises à jour des dépendances JSR et npm.

Conclusion

Si vous êtes développeur Node.js, je vous conseille de vous intéresser à Deno, et même à Bun. Je ne sais pas si ces deux runtime sont totalement prêts pour des projets en production (par exemple, Deno 2.1 n'a que 6 mois de durée de vie, ce qui est plutôt contraignant pour les serveurs.). Mais peut-être que dans un futur proche, il sera cohérent de migrer vers l'un de ces deux-là.

Aller plus loin

	
Annonce sur le blog officiel
(97 clics)

	
Site officiel de Deno
(161 clics)

	
JSR
(68 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/9b8e662a1b2c3d53b06b9351d2c7accca7464065b82b0ed775241551.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/e421908b94c7d730bcc007d980d6b628c0c9af732926361317a909ef.png
Works with

@BONeH

EPUB/imagessections80.png

