

Déployer une application Web C++ sur Heroku avec Docker et Nix

Posté par nokomprendo (site web personnel) le 15 novembre 2018 à 16:23.
Édité par ZeroHeure, Davy Defaud, palm123 et Nÿco.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	docker

	nix

	debian

	heroku

[image: Communauté]

Les services de plate‐forme (PaaS) comme Heroku permettent de déployer des applications Web écrites dans des langages comme PHP, Ruby, Java… Cependant, déployer des applications C++ est plus compliqué (portabilité de l’interface binaire ABI, gestion des dépendances, etc.). Cette article présente plusieurs solutions pour déployer des applications Web C++ sur Heroku, en utilisant des images Docker et le gestionnaire de paquet Nix.

Sommaire

	Exemple d’application Web C++ avec le cadriciel Wt

	Solution 1 : Dockerfile simple

	Solution 2 : Dockerfile multi‐stage

	Solution 3 : configuration Nix simple

	Solution 4 : configuration Nix optimisée

	Conclusion

	
 Bémol
	Expose

	Point d’entrée

	HealthChecks

Exemple d’application Web C++ avec le cadriciel Wt

Wt est un cadriciel Web basé widget. Il permet de définir les composants de l’interface et leurs interactions, de façon similaire aux API d’interfaces graphiques de bureau comme Qt ou gtkmm. Wt produit des applications Web client‐serveur, mais ceci est transparent pour le développeur. Pour illustrer cet article, prenons une application simple qui répète le texte entré par l’utilisateur :

[image: Appli]

Cette application peut être implémentée avec le code suivant (myrepeat.cpp) :

#include <Wt/WApplication.h>
#include <Wt/WBreak.h>
#include <Wt/WContainerWidget.h>
#include <Wt/WLineEdit.h>
#include <Wt/WText.h>

using namespace std;
using namespace Wt;

// définit une application Web
struct App : WApplication {
 App(const WEnvironment& env) : WApplication(env) {

 // ajoute des widgets
 auto myEdit = root()->addWidget(make_unique<WLineEdit>());
 root()->addWidget(make_unique<WBreak>());
 auto myText = root()->addWidget(make_unique<WText>());

 // connecte les widgets aux fonctions de rappel
 auto editFunc = [=]{ myText->setText(myEdit->text()); };
 myEdit->textInput().connect(editFunc);
 }
};

// lance l’application Web
int main(int argc, char **argv) {
 auto mkApp = [](const WEnvironment& env) { return make_unique<App>(env); };
 return WRun(argc, argv, mkApp);
}

Ce code peut être compilé et exécuté localement, avec les commandes suivantes :

g++ -O2 -o myrepeat myrepeat.cpp -lwthttp -lwt
./myrepeat --docroot . --http-address 0.0.0.0 --http-port 3000

Cependant, on ne peut pas déployer directement le binaire généré sur un service comme Heroku, car le système distant peut être différent du système local. Une solution classique consiste à construire une image Docker contenant un système autonome. C’est ce que font les quatre solutions présentées ci‐dessous.

Solution 1 : Dockerfile simple

Un Dockerfile permet de définir un système complet. On part d’une image de base, ici une Debian 9, on installe les dépendances et l’on construit notre application à partir de son code source. Ici, on installe Wt manuellement car Debian fournit la version 3 et l’on a besoin de la version 4.

configure l'image de base
FROM debian:stretch-slim
RUN apt-get update
RUN apt-get install -y --no-install-recommends \
 ca-cacert \
 cmake \
 build-essential \
 libboost-all-dev \
 libssl-dev \
 wget \
 zlib1g-dev

installe Wt4
WORKDIR /root
RUN wget https://github.com/emweb/wt/archive/4.0.4.tar.gz
RUN tar zxf 4.0.4.tar.gz
WORKDIR /root/wt-4.0.4/build
RUN cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_TESTS=OFF -DBUILD_EXAMPLES=OFF ..
RUN make -j2 install
RUN ldconfig

compile notre application puis configure la commande de lancement
WORKDIR /root/myrepeat
ADD . /root/myrepeat
RUN g++ -O2 -o myrepeat myrepeat.cpp -lwthttp -lwt
CMD /root/myrepeat/myrepeat --docroot . --http-address 0.0.0.0 --http-port $PORT

On note la variable d’environnement PORT dans la commande de lancement, qui sera définie par Heroku lors du déploiement. On peut ensuite construire et lancer localement l’image :

docker build -t myrepeat:v1 .
docker run --rm -it -e PORT=3000 -p 3000:3000 myrepeat:v1

L’application est alors accessible à partir d’un navigateur Web, à l’adresse http://localhost:3000.

L’interface console d’Heroku permet de déployer des images Docker très facilement. Ceci nécessite, bien évidemment, un compte sur Heroku (voir Heroku for free). Par exemple, pour déployer une image Docker dans une application myrepeat, à partir du Dockerfile précédent :

heroku container:login
heroku create myrepeat
heroku container:push web --app myrepeat
heroku container:release web --app myrepeat

L’application déployée est alors accessible à l’adresse http://myrepeat.herokuapp.com/. Cependant, l’image Docker générée est lourde (876 Mio) car elle contient tous les paquets de développement et les produits de compilation de Wt.

Solution 2 : Dockerfile multi‐stage

Pour réduire la taille de l’image Docker, on peut compiler notre application dans un système dédié puis récupérer, dans le système final, le binaire généré et ses dépendances.

configure une image pour construire notre application
FROM debian:stretch-slim as builder
RUN apt-get update
RUN apt-get install -y --no-install-recommends \
 ca-cacert \
 cmake \
 build-essential \
 libboost-all-dev \
 libssl-dev \
 wget \
 zlib1g-dev

installe Wt4
WORKDIR /root
RUN wget https://github.com/emweb/wt/archive/4.0.4.tar.gz
RUN tar zxf 4.0.4.tar.gz
WORKDIR /root/wt-4.0.4/build
RUN cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_TESTS=OFF -DBUILD_EXAMPLES=OFF -DSHARED_LIBS=OFF ..
RUN make -j2 install

construit notre application, avec liaison statique
WORKDIR /root/myrepeat
ADD . /root/myrepeat
RUN g++ -static -O2 -o myrepeat myrepeat.cpp -pthread -lwthttp -lwt \
 -lboost_system -lboost_thread -lboost_filesystem -lboost_program_options \
 -lz -lssl -lcrypto -ldl

crée l'image finale, contenant notre application
FROM debian:stretch-slim
RUN apt-get update
WORKDIR /root
COPY --from=builder /root/myrepeat/myrepeat /root/
CMD /root/myrepeat --docroot . --http-address 0.0.0.0 --http-port $PORT

On peut construire, exécuter et déployer une image de la même façon que précédemment mais l’image obtenue est beaucoup plus légère (83 Mio).

Solution 3 : configuration Nix simple

Avec Nix, il est très facile de configurer un projet. Pour cela, on définit une dérivation, dans un fichier default.nix :

{ pkgs ? import <nixpkgs> {}, wt ? pkgs.wt }:

pkgs.stdenv.mkDerivation {
 name = "myrepeat";
 src = ./.;
 buildInputs = [wt];
 buildPhase = "g++ -O2 -o myrepeat myrepeat.cpp -lwthttp -lwt";
 installPhase = ''
 mkdir -p $out/bin
 cp myrepeat $out/bin/
 '';
}

On peut alors construire notre application avec la commande nix-build puis exécuter le binaire obtenu :

nix-build
./result/bin/myrepeat --docroot . --http-address 0.0.0.0 --http-port 3000

Nix peut également construire des images Docker. Ceci est documenté dans le manuel Nix et dans le wiki Nix. À la place du Dockerfile, on écrit un fichier Nix (par exemple docker.nix), qui décrit l’image Docker à construire :

{ pkgs ? import (fetchTarball "https://github.com/NixOS/nixpkgs/archive/18.09.tar.gz") {} }:

let

 # importe la configuration de notre application
 myapp = import ./default.nix { inherit pkgs; };

 # script pour lancer notre application, dans l'image Docker
 entrypoint = pkgs.writeScript "entrypoint.sh" ''
 #!${pkgs.stdenv.shell}
 $@ --docroot . --http-address 0.0.0.0 --http-port $PORT
 '';

in

construit l'image Docker, avec notre application
pkgs.dockerTools.buildImage {
 name = "myrepeat";
 tag = "v3";
 config = {
 Entrypoint = [entrypoint];
 Cmd = ["${myapp}/bin/myrepeat"];
 };
}

À partir de ce fichier docker.nix, on peut construire une image Docker et la charger dans le registre Docker local :

nix-build docker.nix && docker load < result

On peut alors exécuter l’image Docker localement comme avec les solutions précédentes. Pour le déploiement, on définit une étiquette vers le registre Docker d’Heroku et on y charge notre image :

heroku container:login
heroku create myrepeat
docker tag myrepeat:v3 registry.heroku.com/myrepeat/web
docker push registry.heroku.com/myrepeat/web
heroku container:release web --app myrepeat

L’image Docker obtenue est assez lourde (579 Mio) car elle est construite à partir des paquets Nix standards, qui sont génériques.

Solution 4 : configuration Nix optimisée

Pour réduire la taille de l’image Docker générée, on peut adapter les options des paquets Nix à notre application. Pour cela, on peut redéfinir les options des dérivations ou écrire nos propres dérivations. Par exemple, on peut réécrire la dérivation Wt de la façon suivante (fichier wt.nix) :

{ stdenv, fetchFromGitHub, cmake, boost, openssl, zlib }:

stdenv.mkDerivation {

 name = "wt";

 src = fetchFromGitHub {
 owner = "emweb";
 repo = "wt";
 rev = "4.0.4";
 sha256 = "17kq9fxc0xqx7q7kyryiph3mg0d3hnd3jw0rl55zvzfsdd71220w";
 };

 enableParallelBuilding = true;

 buildInputs = [cmake boost openssl zlib];

 cmakeFlags = ["-DCMAKE_BUILD_TYPE=Release" "-DBUILD_TESTS=OFF" "-DBUILD_EXAMPLES=OFF"];
}

On modifie ensuite le fichier docker.nix de façon à prendre en compte notre version de Wt :

{ pkgs ? import (fetchTarball "https://github.com/NixOS/nixpkgs/archive/18.09.tar.gz") {} }:

let

 # importe un paquet de Wt optimisé pour notre application
 mywt = pkgs.callPackage ./wt.nix {};

 # importe la configuration de notre application, en utilisant notre version de Wt
 myapp = import ./default.nix { inherit pkgs; wt = mywt; };

 entrypoint = pkgs.writeScript "entrypoint.sh" ''
 #!${pkgs.stdenv.shell}
 $@ --docroot . --http-address 0.0.0.0 --http-port $PORT
 '';

in

 pkgs.dockerTools.buildImage {
 name = "myrepeat";
 tag = "v4";
 config = {
 Entrypoint = [entrypoint];
 Cmd = ["${myapp}/bin/myrepeat"];
 };
 }

On peut alors construire et déployer une image Docker de la même façon qu’avec la solution précédente. L’image Docker générée ici fait 105 Mio.

Conclusion

Sans être aussi riche que Node.js ou PHP, C++ possède également des cadriciels Web intéressants. Notamment Wt, qui permet de développer des applications client‐serveur avec une API très proche des cadriciels d’interface de bureau, comme Qt et gtkmm.

Si les PaaS comme Heroku permettent facilement de déployer des applications dans les « langages Web classiques », il est également souvent possible de déployer des images Docker, et donc des applications C++.

Les fichiers Dockerfile permettent de construire des images Docker relativement facilement. Cependant, construire une image optimisée demande un peu plus de travail (image multi‐stage, compilation statique…), notamment pour éviter d’inclure un inutile environnement de compilation dans l’image à déployer.

Enfin, le gestionnaire de paquets Nix permet également de construire des images Docker, avec les Docker Tools. Ces outils s’intègrent au système de gestion de paquets de Nix, ce qui permet de profiter de ses avantages (fichiers Nix, composition, reproductibilité, isolation…).

 Bémol

Cependant, n’oubliez pas que Heroku n’exécute pas d’images Docker. Les layers sont extraits et ça tourne sous LXC. Il y a quelques incidences à prendre en compte :

Expose

De base, en Docker, une image expose un ou plusieurs ports, et ça permet de savoir quoi mettre en correspondance et qui écoute. Pour Heroku, ça ne fonctionne pas, il faut passer $PORT :

CMD /root/myrepeat --docroot . --http-address 0.0.0.0 --http-port $PORT

Point d’entrée

Le point d’entrée (entrypoint) des images est surchargé par /bin/sh -c s’il n’est pas défini. Par exemple, si l’on utilise distroless pour faire une image Go, le point d’entrée est null et la commande est le binaire Go. Et ça fonctionne bien sous Docker. Mais sous Heroku, c’est /bin/sh -c <binaire> qui est executé.

En mettant le binaire dans le point d’entrée et la commande à "", ça fonctionne.

HealthChecks

Les bilans de santé (healthchecks) ne sont pas pris en charge, le Dyno manager fait automatiquement ses propres checks.

Pour avoir une idée des autres limites, voir Unsupported Dockerfile commands.

N. D. M. : Ce bémol n’est pas de l’auteur, mais de CrEv.

Aller plus loin

	
Journal à l’origine de la dépêche
(97 clics)

	
Code source
(82 clics)

	
La vidéo sur YouTube
(90 clics)

	
La vidéo sur PeerTube
(124 clics)

	
Nix 2.0 sur LinuxFr.org
(91 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/f15fddbaeaf3da1cfcbf1c84502e02bbc8454a9e40dd90414cded63e.png
repeat-web-app x|+

(€)% @ © ocalhost:000

‘ hello ‘
hello

EPUB/imagessections9.png

