

Développement d'applications avec Objective Caml


Posté par trollhunter le 05 mars 2001 à 04:19.

Modéré par trollhunter.

Étiquettes :

	fortran

	livre











[image: Doc]



Extrait:


"Le livre d'O'Reilly le Développement d'applications avec Objective Caml traite d'un langage de programmation connu par un certain nombre d'universitaires qui ont débuté la programmation par ce langage."
	





	

Développement d'applications avec Objective Caml


 



		Auteur

		 Emmanuel Chailloux, Pascal Manoury et Bruno Pagano 


 



		Editeur

		O'Reilly


 



		ISBN

		2-84177-121-0


 



		Pages

		 700 


 



		Prix

		 Prix indicatif 250F 






		Rédacteur

		 bugattiFan







 



[image: Couverture]

<!-- Ceci est a mettre comme texte de la news annoncant la revue<br/>
	du livre --> 

  

Le livre d'O'Reilly le Développement d'applications avec Objective

Caml traite d'un langage de programmation connu par un certain nombre 

d'universitaires qui ont débuté la programmation par ce langage. 


 

 <!-- Fin du texte de la news -->










Il y a un objectif plus précis qui est de montrer que OCaml, petit

nom d'Objective Caml,  

n'est pas seulement un langage d'apprentissage mais un langage pour le développement d'application 

de taille et de complexité conséquente.

Ce livre est articulé en quatre grandes parties :




	Noyau du langage :  présentation du langage et de l'interface graphique 


	Outils de développement : description des bibliothèques standard de la distribution de l'INRIA.


	Organisation d'application : explication de la programmation modulaire et programmation orienter objet.


	Concurrence et répartition : explication de la programmation concurrente c'est à dire la programmation multiprocessus.









La première partie nous décrit d'abord la programmation

fonctionnelle.




 

Ce type de programmation est mal connue du grand public, 

mais je pense qu'elle mériterait un peu plus de considération. 

Ocaml dérive de ML qui est un langage fonctionnel. Par conséquent, ce

chapitre mériterait plus de pages.  Ce n'est pas dans une

cinquantaine de pages que le non initié peut apréhender la richesse de

cette forme de programmation






Puis nous voyons que Ocaml est aussi un langage de programmation

impérative, une programmation que vous connaissez certainement car 

c'est le style de programmation par défaut de C, Pascal, Fortran... ,  

cette partie courte comme celle de la partie fonctionnelle nous

indique que ce livre s'addresse avant tout à

un utilisateur de Ocaml ou bien de Caml-Light.




 

Je ne serai pas aussi critique sur ce chapitre. 

Récursif ou itératif, fonctionnel ou impératif, là est la question. En

vingt quatre pages les auteurs essayent de faire une liaison 

entre deux styles qui s'opposent à l'aide d'exemples d'algorithmes qui

sont implémentés avec les deux méthodes.

N'oublions que le choix d'un style de programmation est aussi lié à

l'architecture de la machine.








La seconde partie décrit des aspects plus complexes tels le

fonctionnement des compilateurs. 

Ocaml a un compilateur natif ou code-octet exécutable sur une machine

virtuelle appelé Zinc (Zinc Is Not Caml),  

comme en Java, avec un test intéressant de performance entre ces deux

modes d'exécution. 

Ce chapitre sur les modes de compilation demande un  bon niveau de

connaissance des techniques de compilation. 

Un autre chapitre ardu est celui du Récupérateur automatique de

Mémoire. Et oui, il existe d'autres langages que Java qui ont un Garbage

Collector. 

Les auteurs expliquent l'algorithme qu'utilise Ocaml pour effectuer

cette tache. Bien que, théoriquement nous n'avons pas besoin de gérer la mémoire, 

cette explication est obligatoire pour utiliser efficacement les

modules de gestion de la mémoire :




	Garbage Collector (nommé GC)


	Pointeur (nommé Weak) 









La description des bibliothèques est complète mais je regrette la

non-explication de la bibliothèque d'accès des bases de données, 

les auteurs s'expliquent du fait qu'elle ne marche que sur UNIX 

(NDBD)

La mise au point des programmes : trace, déboguage et profilage  sont exposés dans le

chapitre 10 à l'aide de courts exemples.






L'utilisation des utilitaires Ocamllex et Ocamlyacc est  exposée

mais les auteurs n'approfondissent pas les  grammaires régulières,

contextuelles, context-free, ambiguë ... 

dont je conseille l'étude préalablement à leur utilisation.

Etant donné l'importance de ces deux utilitaires il est regretable 

que seulement 25 pages y soient consacrées.






 L'interopérabilité avec C est un chose dont la

mise en oeuvre n'est pas évidente, mais la solution se trouve dans ce livre il faut

souligner que les différents aspects de cette solution ( GC, Valeurs,

fonctions ...) sont étudiés.








le graphisme est présent dans cet ouvrage, puisque les auteurs

présentent une API graphique dont le nom est UPI qui utilise le module

Graphics d'OCaml vous y voyez les composants de bases, les callbacks

selon Caml. La pièce de résistance de ce chapitre est une application de

recherche de chemin minimal dans un graphe en ultilisant l'algorithme

de Dijkstra avec une très jolie interface graphique.






Après cette description de Ocaml 

nous passons à la méthode de développement d'application. 

Une nouvelle question se pose : Modulaire ou Objet ? 




Cette partie est découpée en trois sous parties : la programmation

modulaire, la programmation par objets et la comparaison des modèles

d'organisation. 






Les deux premiers chapitres sont plus une description

d'application de ces techniques à l'aide d'Ocaml qu'un cours 

d'approche objet et d'approche modulaire.






Le troisième chapitre de cette partie compare les deux méthodes de développement,

l'éfficacité et la limitation des modèles. Les auteurs démontrent que ces modèles sont

finalement complémentaires.








La dernière partie est celle qui s'adresse plus aux utilisateurs

d'UNIX puisque entres autres choses, aux valeurs de retour près ( cf

cas d'échec de fork() ) est on ne peut plus familière aux Unixiens. En fait

c'est l'API Posix Caml-isée. Attention de nombreux exemples ne tournent pas

sous Windows.






Le chapitre consacré à la programmation concurente est on ne peut plus

classique ce qui justement permet d'appréhender la démarche de CAML.

cette fonctionnalité est assurée par

le module Unix mais certaines fonctions sont accessibles

  par les utilisateurs de Windows, pour ma part je ne conseille pas ce

type de programmation sur Windows.

 




Nous avons l'exemple de ce type de programmation sur un serveur HTTP.

Finalement nous avons une conclusion pertinente sur le langage sur le

fait de sa syntaxe, par exemple sur l'invocation d'une méthode par #

au lieu de . habituel. Mais aussi les auteurs évoquent d'autres

langages fonctionnels (ML, Scheme, Miranda, Haskell...). Chaque

chapitre est agrémenté par des exercices dont les solutions sont sur

le cédérom. Et chaque partie est illustrée par des applications

détaillées qui sont pertinentes comme par exemple une interface graphique, un serveur

HTPP. 

Les lien Internet disséminés dans le livre sont source

d'approfondissement sur les sujets qui vous intéressent. Il en est

de même de la

bibliographie. Donc je conseille ce livre pour les amateurs de Ocaml

et ceux qui veulent comprendre la différence entre fonctionnel et

impératif, mais le déconseille pour apprendre le langage.  








Les captures d'écran et les schémas d'explication agrémentent

la lecture du livre. En ce qui concerne les tableaux recapitulatifs sur les

bibliothèques, ils sont un aide mémoire précieux.






A noter que cet ouvrage est accessible gratuitement en ligne sur le site

d'OReilly

J'ai trouvé que certains chapitres étaient vraiments trop courts tel, par

exemple celui consacré aux outils d'analyses lexicale et syntaxique.



En outre, la francisation à outrance conduisant aux termes 

 code-octet et prise de communication pour

les termes  byte code et soket utilisés par la profession

m'agace.






Pour exemple d'une application réelle réalisable avec ce langage, 

nous avons Hevea, le convertisseur Latex HTML, qui a

convertit ce livre en page HTML ce qui est une belle démonstration

du potentiel de ce langage.

















 Table des matières 
 



	1 : Comment obtenir Objective Caml


	2 : Programmation fonctionnelle


	3 : Programmation impérative


	4 : Styles fonctionnel et impératif


	5 : Interface graphique


	6 : Applications


	7 : Mode de compilation et portabilité


	8 : Bibliothèques


	9 : Récupérateur automatique de mémoire


	10 : Outils d'analyse des programmes


	11 : Outils d'analyses lexicale et syntaxique


	12 : Interopérabilité avec C


	13 : Applications


	14 : Programmation modulaire


	15 : Programmation par objets


	16 : Comparaison des modèles d'organisation


	17 : Applications


	18 : Communication et processus


	19 : Programmation concurrente


	20 : Programmation répartie


	21 : Applications


	22 : Développement d'applications en Objective Caml


	Annexe A : Types cycliques


	Annexe B : Objective Caml 2.99





 

  



	 Références 


			

		les ressources

		sur site web d'OReilly consacrées à ce livre.


	L'ouvrage

 en ligne


	

		Les errata 

                 du livre.


	Objective Caml sur le site de 

l'INRIA





	










EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/imagessections12.png





