

Développer une interface web avec le toolkit Atlas (1/2)

Posté par Claude SIMON (site web personnel) le 01 janvier 2021 à 13:02.
Édité par Ysabeau 🧶.
Modéré par Ysabeau 🧶.
Licence CC By‑SA.

Étiquettes :

	web

	spa

	python

	atlas_toolkit

[image: Python]

Le toolkit Atlas permet de programmer des interfaces d’applications web monopages (SPA). Il est léger (quelques dizaines de Ko), sans dépendances, ne nécessite pas de savoir programmer en JavaScript, et n’impose pas d’architecture logicielle de type MVC.

En outre, toute application développée avec le toolkit Atlas est, dès son lancement, instantanément et automatiquement accessible de n’importe quel dispositif (smartphone, tablette…) équipé d’un navigateur web moderne connecté à Internet. Cet accès est facilité par un code QR qui s’affiche dans l’application.

Le toolkit Atlas a déjà fait l’objet de quelques publications ici même. Pour varier un peu les plaisirs durant ces longues soirées d’hiver de couvre-feu, voici la première partie d’un document qui devrait faciliter l’utilisation du toolkit Atlas. Il détaille le développement d’une application (très) basique de gestion de contacts, dont l’apparence est la suivante :

[image: Apparence de l'application faisant l'objet du tutoriel 'Contacts']

Le toolkit Atlas est disponible pour Java, Node.js, Perl, Python et Ruby. C’est la version la plus populaire, à savoir Python, qui est utilisée pour ce document. Cependant, l’API étant la même pour toutes les versions, on peut facilement le transposer aux autres langages disponibles.

Sommaire

	À propos de ce document

	
Le ficher HTML principal (Main.html)
	Structure générale

	Détail d’un contact

	Boutons généraux

	Boutons de saisie

	Liste de contacts

	
Le fichier HTML des métadonnées (Head.html)
	Apparence de l’application

	Visibilité des boutons

	
Rendu de l’interface (part1.py)
	Affichage de la page HTML

	La boucle évènementielle

	
Liste des contacts (part2.py)
	Liste fictive

	Affichage

	
Détail d’un contact (part3.py)
	Affichage

	Sélection

	À suivre…

À propos de ce document

L’accent étant mis sur la mise en œuvre de l'API du toolkit Atlas, le lecteur est supposé posséder les connaissances (basiques) nécessaires à la compréhension du code HTML/CSS et Python présent dans ce document.

Les fichiers sources associés à ce document sont disponibles dans un dépôt GitHub, lui-même cloné sur Repl.it, un IDE en ligne.

Si Python 3 est installé sur votre ordinateur, vous pouvez récupérer le dépôt GitHub et visualiser/exécuter directement sur votre machine le code associé aux différentes sections de ce document.

Vous pouvez également, notamment si vous n’avez pas installé Python 3, visualiser/exécuter, éventuellement après modification, ce code directement dans votre navigateur en utilisant le lien Repl.it ci-dessus.

Pour ne pas allonger outre mesure ce document, chaque section ne contiendra que les détails du code sur lequel elle porte. Néanmoins, au début de chaque section, il y aura un lien vers le code source complet tel que décrit dans cette section, ainsi que les instructions à lancer pour l’exécuter sur Repl.it et en local.

Les lignes, dans les fichiers source, précédant la ligne import atlastk ne sont là que pour faciliter l’utilisation de ces fichiers dans le cadre de ce document et ne sont pas nécessaires à une utilisation courante du toolkit Atlas.

Le ficher HTML principal (Main.html)

Code source : lien sur GitHub.

Le fichier Main.html est un fichier au format HTML décrivant l’interface.

Ce fichier va prendre place dans la section body de la page HTML constituant l’interface de l’application.

Structure générale

Voici un aperçu partiel du contenu de ce fichier, mettant en évidence sa structure générale :

<fieldset>
 <fieldset id="Contact">
 <!-- Détail d’un contact -->
 </fieldset>
 <div style="display: table; margin: 10px auto auto auto;">
 <div>
 <!-- Boutons généraux -->
 </div>
 <div class="Edition">
 <!-- Boutons de saisie-->
 </div>
 </div>
</fieldset>
<div style="display: table; margin: 10px auto auto auto; border-collapse: collapse;">
 <!-- Liste des contacts -->
</div>

Il est aisément compréhensible de celles et ceux qui sont familiers avec HTML.

Ses différentes sous-parties, qui prennent la place de commentaires ci-dessus, vont être détaillées ci-dessous.

Détail d’un contact

Voici le code dédié à l’affichage du détail d’un contact :

<table style="margin: auto;">
 <tr>
 <td>
 <label for="Name">Full name:</label>
 </td>
 <td>
 <input id="Name" size="50" />
 </td>
 </tr>
 <tr>
 <td>
 <label for="Address">Address:</label>
 </td>
 <td>
 <input id="Address" size="50" />
 </td>
 </tr>
 <tr>
 <td>
 <label for="Phone">Phone:</label>
 </td>
 <td>
 <input id="Phone" type="tel" size="50" />
 </td>
 </tr>
 <tr>
 <td>
 <label for="Note">Note:</label>
 </td>
 <td>
 <textarea id="Note" style="width: 100%;"></textarea>
 </td>
 </tr>
</table>

On y trouve un tableau, avec, pour chacun des champs constituant un contact, une ligne (chacune délimitée par <tr> et </tr>) accompagnée d’un libellé et d’un identifiant explicite.

Boutons généraux

Ces boutons vont servir à créer/éditer/supprimer un contact.

En voici le code :

<button class="Display" data-xdh-onevent="New">New</button><!-- Bouton pour la création -->

 <button data-xdh-onevent="Edit">Edit</button><!-- Bouton pour l'édition -->
 <button data-xdh-onevent="Delete">Delete</button><!-- Bouton pour la suppression -->

À part l’attribut data-xdh-onevent, on n’a là que du HTML des plus classiques.

Les différentes classes (valeurs Display et DisplayAndSelect des attributs class) ont cependant un rôle bien particulier, qui sera révélé dans les sections qui suivent.

L’attribut data-xdh-onevent prend ici la place de l’habituel attribut onclick. L’attribut onclick prend habituellement pour valeur le code JavaScript à lancer lorsque l’on clique sur le bouton auquel il est affecté.

Ici, à la place, on utilise l’attribut data-xdh-onevent, qui va prendre pour valeur un libellé d’action, libellé que l’on retrouvera dans le code Python. On va pouvoir ainsi coder les actions à réaliser lors d’un clic sur le bouton non plus en JavaScript, mais en Python.

Boutons de saisie

Ces boutons sont affichés lors de la saisie d’un contact, et permettent de valider ou d’annuler cette saisie.

Voici le code correspondant :

<button data-xdh-onevent="Cancel">Cancel</button><!-- Bouton pour l’annulation de la saisie -->
<button data-xdh-onevent="Submit">Submit</button><!-- Bouton pour la validation de la saisie -->

Là encore, rien de particulier, mis à part l’attribut data-xdh-onevent, que l’on a déjà rencontré ci-dessus.

Le contenu des attributs data-xdh-onevent, à savoir Cancel et Submit, va être utilisé dans le code Python de l’application.

Notez qu’ici le nom du bouton (la valeur de l’élément button) est identique à la valeur de son attribut data-xdh-onevent. C’est uniquement par commodité ; ce n’est en rien obligatoire.

Liste de contacts

Cette partie affiche le tableau qui va accueillir la liste des contacts au sein de son élément tbody, dont le contenu va être généré par l’application.

En voici le contenu :

<table id="Contacts" style="cursor: default; border-collapse: collapse;">
 <thead>
 <th>Name</th>
 <th>Address</th>
 <th>Phone</th>
 <th>Note</th>
 </thead>
 <tbody id="Content" />
</table>

Notez l’identifiant Content, que l’on va retrouver dans le code Python. L’identifiant Contacts n’est, lui, utilisé que dans le fichier Head.html décrit ci-dessous.

Le fichier HTML des métadonnées (Head.html)

Code source : lien sur GitHub.

Ce fichier, également au format HTML, prendra place dans la section head de la page HTML constituant l’interface de l’application.

Apparence de l’application

La première partie de ce fichier définit le titre, l’icône, et, à l’aide de quelques règles CSS, diverses retouches au niveau de l’apparence de l’interface.

En voici le contenu :

<title>Address book</title>
<link rel="icon" type="image/png"
 href="" />
<style>
 #Contact label {
 font-weight: bold;
 }

 #Contact span {
 text-align: left;
 }

 #Contacts th,
 #Contacts td {
 border: 1px solid black;
 padding: 0% 5px;
 }

 #Contacts td:nth-child(3) {
 text-align: right;
 }

 #Contacts tr:nth-child(even)
 {
 background: #CCC
 }

 #Contacts tr:nth-child(odd)
 {
 background: #FFF
 }

 #Contact *:disabled {
 background-color: snow;
 color: initial;
 }
</style>

Visibilité des boutons

La seconde partie du fichier permet de gérer la visibilité des boutons.

En voici le contenu :

<style id="HideDisplay">
 .Display {
 display: none;
 }
</style>
<style id="HideDisplayAndSelect">
 .DisplayAndSelect {
 display: none;
 }
</style>
<style id="HideEdition">
 .Edition {
 display: none;
 }
</style>

On y voit des éléments style accompagnés d’un identifiant. Ces éléments vont permettre de cacher/afficher certains boutons.

En effet, chaque élément style définit une règle pour une certaine classe. En activant/désactivant un de ces éléments, on ajoute/retire à cette classe la règle CSS contenu dans l’élément. Par conséquent, on agit ainsi sur les éléments, en l’occurrence des boutons, auxquels cette classe est affectée.

On retrouvera les différents identifiants de ces éléments style dans le code Python détaillé dans les sections qui suivent.

Rendu de l’interface (part1.py)

	Code source : lien sur GitHub ;

	exécution :

	sur Repl.it : bouton Run, n1 + entrée, clic sur URL,

	en local : python3 atlas-python/tutorials/Contacts/part1.py

On va ici afficher l’interface de l’application, dont, suite à une action de l’utilisateur, seules les parties qui le nécessitent seront modifiées.

Affichage de la page HTML

En premier lieu, on va définir la fonction qui sera appelée à chaque ouverture de session :

def ac_connect(dom):
 dom.inner("",open("Main.html").read())

dom est un objet fournit par le toolkit Atlas ; chaque session a sa propre instance de cet objet.

Dans cette fonction, la méthode inner(…)va remplacer la totalité de la page web par le contenu du fichier Main.html précédemment décrit.

Le premier paramètre de cette méthode est l’identifiant de l’élément dont on va remplacer le contenu. La chaîne vide est une valeur spéciale qui fait référence à l’élément racine de la page.

À titre indicatif, il existe également les méthodes before(…), begin(…), end(…) et after(…) pour insérer le contenu respectivement juste avant, au début, à la fin ou juste après l’élément dont l’identifiant est passé en paramètre.

On va ensuite affecter cette fonction à une action, à l’aide d’un dictionnaire nommé, par convention, CALLBACKS :

CALLBACKS = {
 "": ac_connect
 }

Ici, ac_connect est affecté à une action dont le libellé est une chaîne vide. Cette valeur correspond à l’action qui est lancée à chaque nouvelle session.

La boucle évènementielle

On va ensuite lancer la boucle évènementielle de l’application, en lui passant le dictionnaire des actions, ainsi que le contenu du fichier Head.html décrit précédemment :

atlastk.launch(CALLBACKS,None,open("Head.html").read())

Le paramètre dont la valeur est None sera abordé plus tard.

Liste des contacts (part2.py)

	Code source : lien sur GitHub ;

	exécution :

	sur Repl.it : bouton Run, n2 + entrée, clic sur URL,

	en local : python3 atlas-python/tutorials/Contacts/part2.py

Dans cette section, nous allons programmer l’affichage de la liste des contacts.

Liste fictive

On va d’abord créer une liste de contacts fictive, histoire d’avoir quelque chose à afficher :

EXAMPLE = [
 {
 "Name": "Holmes, Sherlock",
 "Address": "221B Baker Street, Londres",
 "Phone": "(use telegraph)",
 "Note": "Great detective!"
 },
 {
 "Name": "Holmes, Mycroft",
 "Address": "Diogenes Club, Pall Mall, Londres",
 "Phone": "(use telegraph)",
 "Note": "Works for the British government.\nBrother of Holmes, Sherlock."
 },
 {
 "Name": "Tintin",
 "Address": "Château de Moulinsart",
 "Phone": "421",
 "Note": "Has a dog named Snowy."
 },
 {
 "Name": "Tournesol, Tryphon (prof.)",
 "Address": "Château de Moulinsart",
 "Phone": "421",
 "Note": "Creator of the Bianca rose."
 }
]

On va affecter cette liste à une variable qui fera office de base de données :

contacts = EXAMPLE

Affichage

Créons une fonction dédiée à l’affichage de cette liste :

def display_contacts(dom):
 html = ""

 for contactId in range(len(contacts)):
 contact = contacts[contactId]
 html += f'<tr id="{contactId}" data-xdh-onevent="Select" style="cursor: pointer;">'
 for key in contact:
 html += f'<td>{contact[key]}</td>'
 html += '</td>'

 dom.inner("Content", html)

Dans cette fonction, on récupère chaque contact de la liste, et, pour chacun de ces contacts, le contenu de chacun de ses champs. On va s’en servir pour créer le contenu du corps du tableau dédié à l’affichage de la liste, contenu qui sera stocké dans la variable html.

Le contenu de cette variable est ensuite injecté dans le corps de la table, plus précisément dans l’élément tbody d’identifiant Content (voir le fichier Main.html), grâce à la méthode inner(…), que l’on a déjà rencontrée. Notez que le premier paramètre n’est plus, comme auparavant, une chaîne de caractères vide, mais bien l’identifiant de l’élément concerné, à savoir Content.

Chaque ligne du tableau a son propre identifiant, et un attribut data-xdh-onevent="Select" qui fera l’objet de la prochaine section.

Enfin, on ajoute l’appel à cette fonction dans la fonction ac_connect(…), :

def ac_connect(dom):
 dom.inner("",open("Main.html").read())
 display_contacts(dom)

Détail d’un contact (part3.py)

	Code source : lien sur GitHub ;

	exécution :

	sur Repl.it : bouton Run, n3 + entrée, clic sur URL,

	en local : python3 atlas-python/tutorials/Contacts/part3.py

Procédons maintenant à l’affichage des détails d’un contact sélectionné par l’utilisateur.

Affichage

On va commencer par le remplissage des champs au sommet de l’interface avec les valeurs du contact sélectionné dans la liste.

Voici la fonction correspondante :

def display_contact(contactId,dom):
 dom.set_values(contacts[contactId])

La méthode set_values(…) prend un dictionnaire avec, pour clefs, des identifiants d’éléments, et, pour valeurs, le contenu que doivent prendre ces éléments.

Comme, dans la page HTML, les identifiants des éléments sont identiques aux clefs correspondant aux champs d’un contact, le dictionnaire est déjà constitué et n’est plus à construire. On l’utilise donc tel quel dans l’appel de la méthode set_values(…).

contactId est l’index, dans la liste contacts, du contact à afficher.

Sélection

On va maintenant définir la fonction que l’on va affecter à l’action Select définit dans l’attribut data-xdh-onevent du code HTML qui est crée dans la précédente section :

def ac_select(dom,id):
 display_contact(int(id),dom)

Le paramètre id contient l’identifiant de l’élément recevant l’évènement à l’origine de l’action à laquelle cette fonction a été affectée. Ici, l’évènement est un clic sur une ligne du tableau contenant la liste des contacts, évènement auquel a été associée l’action Select via l’attribut data-xdh-onevent. Conformément à ce qui va être défini ci-dessous dans la variable CALLBACKS, cette action va lancer la fonction ac_select.

Dans la section précédente, on a vu que, pour le tableau HTML contenant la liste des contacts, chaque ligne a pour identifiant l’index, dans la table contacts, du contact correspondant. On peut donc utiliser directement id, après l’avoir converti en entier (id est fourni sous forme d’une chaîne de caractères), pour le passer à la fonction display_contact(…)

On met à jour la table CALLBACKS, en affectant cette fonction à l’action Select (définie comme valeur de l’attribut data-xdh-onevent dans le code HTML généré dans la précédente section) :

CALLBACKS = {
 …
 "Select": ac_select
}

À suivre…

Sur les recommandations de l’équipe de modération, ce document a été découpé en deux dépêches.

Celle-ci présentait le fichier HTML principal, celui des métadonnées, ainsi que les principales fonctions relatives à l’affichage. La seconde dépêche portera sur la gestion des évènements.

Aller plus loin

	
Homepage
(308 clics)

	
Sur GitHub
(51 clics)

	
Sur Repl.it
(23 clics)

	
API
(41 clics)

	
Seconde partie
(600 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/08b3ba8be45c4a77a682f05130949ac9e195ecda39c4d04a12e01aec.png
Address: [Diogenes Club, Pall Mal, Londres.

Phone: [use eegraph)
Warks far the Britiah govermment
Note: [arother of Hatees, Shertock.

New || ede | oelete

Name. Address Phone Note
Fiolmes, Sherlock 2218 Baker Street, Londres (use telegraph) | Great detectivel

‘Holmes, Mycroft Diogenes Club, Pall Mall, Londres | (use telegraph) [Works for the British government. Brother of Holmes, Shetlock.
Tintin Chateau de Moulinsart 421 Has a dog named Snowy.

“Tournesol, Tryphon (prof.) | Chateau de Moulinsart. 421 [Creator of the Bianca rose.

EPUB/imagessections41.png
python

powered

