

Développer une interface web avec le toolkit Atlas (2/2)

Posté par Claude SIMON (site web personnel) le 27 janvier 2021 à 15:08.
Édité par orfenor, Pierre Jarillon, Benoît Sibaud et Ysabeau 🧶.
Modéré par Ysabeau 🧶.
Licence CC By‑SA.

Étiquettes :

	web

	spa

	python

	atlas_toolkit

[image: Python]

Le toolkit Atlas permet de programmer des interfaces d’applications web monopages (SPA) sans qu’il ne soit nécessaire de savoir programmer en JavaScript et sans imposer d’architecture logicielle. De plus, toute application développée avec le toolkit Atlas est, dès son lancement, instantanément et automatiquement accessible d’Internet.

Le toolkit Atlas s’apparente à ces bibliothèques qui, en s’appuyant sur GTK, Qt, wxWidgets…, ont pour but de faciliter le développement d’interfaces graphiques. La différence est que le toolkit Atlas, lui, s’appuie sur les technologies web (HTML/CSS).

Le toolkit Atlas est disponible pour Java, Node.js, Perl, Python et Ruby. Ce document porte sur le développement, avec la version Python du toolkit Atlas, d’une application dont voici un aperçu :

[image: Apparence de l’application faisant l’objet du tutoriel 'Contacts']

Sommaire

	Précédemment dans Développer une interface web avec le toolkit Atlas

	
Désactivation des champs + bouton New (part4.py)
	Champs à désactiver

	Gestion générale des éléments interactifs

	Mise en œuvre

	
Saisie d’un nouveau contact (part5.py)
	Les différents modes de l’application

	Classe dédiée à chaque session

	Adaptation de la gestion des contrôles interactifs

	Autres adaptations

	Activation de la saisie

	
Boutons de saisie (part6.py)
	Adaptation de la gestion des contrôles interactifs

	Confirmation/annulation d’une saisie

	
Les autres boutons (part7.py)
	Adaptation de la classe Board

	Adaptation de la gestion des contrôles interactifs

	Modification d’un contact

	Suppression d’un contact

	Bonus (part8.py)

	Vers l’infini, et au-delà !

Précédemment dans Développer une interface web avec le toolkit Atlas

Sur les recommandations de l’équipe de modération, ce document a été découpé en deux dépêches, dont voici la seconde.

La précédente dépêche présentait le fichier HTML principal, celui des métadonnées, ainsi que les principales fonctions relatives à l’affichage. Cette seconde dépêche va porter sur la gestion des évènements dédiés à l’édition.

Désactivation des champs + bouton New (part4.py)

	Code source : lien sur GitHub ;

	exécution :

	sur Repl.it : bouton Run, n4 + entrée, clic sur URL,

	en local : python3 atlas-python/tutorials/Contacts/part4.py

On remarquera que le contenu des champs dans lesquels s’affichent les détails sont modifiables, ce qui n’est pas le comportement voulu dans ce contexte. On va donc écrire le code permettant de désactiver ces champs.

Champs à désactiver

Pour cela, on va d’abord créer une liste contenant les identifiants, définis dans le fichier Main.html, des différents champs à désactiver :

FIELDS = [
 "Name",
 "Address",
 "Phone",
 "Note"
]

Gestion générale des éléments interactifs

On va créer une fonction qui va gérer l’état de ces champs, et qui sera complétée ultérieurement pour gérer d’autres éléments :

def update_outfit(dom):
 dom.disable_elements(FIELDS)

Cette fonction fait appel à la méthode disable_elements(…), dont le rôle est de désactiver les éléments dont les identifiants sont passés en paramètres.

On va également utiliser cette fonction pour faire apparaître le bouton New, qui permet de saisir un nouveau contact.

Pour cela, on a affecté la classe Display à ce bouton (voir le fichier Main.html). Comme l’élément style d’identifiant HideDisplay (voir le fichier Head.html) définit la règle qui cache les éléments de classe Display, on va le désactiver en utilisant la méthode disable_element(…). La fonction update_outfit(…) se présente alors de la manière suivante :

def update_outfit(dom):
 dom.disable_elements(FIELDS)
 dom.disable_element("HideDisplay")

On pourrait également ajouter l’identifiant HideDisplay à la liste passée à disable_elements(…), pour économiser un appel de fonction.

Mise en œuvre

On va appeler cette fonction à chaque action de l’utilisateur, ce qui peut sembler ne pas être approprié vu son contenu actuel, mais prendra sens avec la version finale de cette fonction, que l’on découvrira par la suite :

def ac_connect(dom):
 dom.inner("",open("Main.html").read())
 display_contacts(dom)
 update_outfit(dom)

def ac_select(dom,id):
 display_contact(int(id),dom)
 update_outfit(dom)

Saisie d’un nouveau contact (part5.py)

	Code source : lien sur GitHub ;

	exécution :

	sur Repl.it : bouton Run, n5 + entrée, clic sur URL,

	en local : python3 atlas-python/tutorials/Contacts/part5.py

On va maintenant gérer l’action affectée au bouton New. Pour cela, on va utiliser un objet qui va stocker le mode (state dans le code source) dans lequel est placé le logiciel, à savoir édition ou affichage.

Les différents modes de l’application

On va d’abord créer un enum relatifs à ces deux modes, à l’aide du module enum, que l’on va importer en modifiant l’instruction d’importation existante :

 import atlastk, enum

Créons l'enum proprement dit :

class State(enum.Enum):
 DISPLAY = enum.auto() # Affichage
 EDIT = enum.auto() # Édition

Classe dédiée à chaque session

On va maintenant créer une classe Board dans laquelle on va pouvoir stocker les différentes variables propres à chaque session :

class Board:
 def __init__(self):
 self.state = State.DISPLAY

Le constructeur de cette classe (__init__(…)) va stocker le mode initial de l’application, à savoir DISPLAY (affichage), dans la variable membre state.

Il faudra créer une instance de cette classe pour chaque nouvelle session. Ceci est réalisé automatiquement par le toolkit Atlas : il suffit de modifier l’appel à la fonction launch(…) en remplaçant le paramètre de valeur None par le constructeur de cette classe, ce qui donne :

atlastk.launch(CALLBACKS,Board,open("Head.html").read())

Ce faisant, toutes les fonctions référencées dans CALLBACKS, qui, je le rappelle, contient les associations entre fonctions et actions, vont recevoir l’instance de l’objet Board correspondant à la session à l’origine de l’appel. Il faut donc modifier le prototype de ces fonctions :

def ac_connect(board,dom):
 …

def ac_select(board,dom,id):
 …

Notez l’ajout du paramètre board.

Adaptation de la gestion des contrôles interactifs

On va passer ce paramètre à la fonction update_outfit(…), pour qu’on puisse y tenir compte du mode dans lequel se trouve l’application et agir en conséquence, ce qui donne :

def update_outfit(board,dom):
 if board.state == State.DISPLAY:
 dom.disable_elements(FIELDS)
 dom.disable_element("HideDisplay")
 elif board.state == State.EDIT:
 dom.enable_elements(FIELDS)
 dom.enable_elements("HideDisplay")

On y utilise les méthodes enable_element[s](…), qui sont les pendants des méthodes disable_element[s](…).

Autres adaptations

Il faut, bien entendu, également modifier les appels à update_outfit(…) en conséquence ; on va également, par précaution, mettre à jour, dans l’instance board, le mode de l’application pour être sûr qu’il correspond à l’action lancée :

def ac_connect(board,dom):
 …
 board.state = State.DISPLAY
 update_outfit(board,dom)

def ac_select(board,dom,id):
 …
 board.state = State.DISPLAY
 update_outfit(board,dom)

On va également modifier la fonction display_contact(…), pour pouvoir l’utiliser afin de vider le contenu des champs. Pour cela on va créer un dictionnaire correspondant à un contact vide :

EMPTY_CONTACT = {
 "Name": "",
 "Address": "",
 "Phone": "",
 "Note": ""
}

qui va être utilisé de la manière suivante dans la fonction display_contact(…) :

def display_contact(contactId,dom):
 dom.set_values(EMPTY_CONTACT if contactId == None else contacts[contactId])

On notera que donner la valeur None au paramètre contactId entraînera dorénavant le vidage des champs.

Activation de la saisie

Ne reste plus qu’à définir la fonction qui sera appelée lors d’un clic sur le bouton New :

def ac_new(board,dom):
 board.state = State.EDIT
 display_contact(None,dom)
 update_outfit(board,dom)
 dom.focus("Name")

Cette fonction réalise successivement les opérations suivantes :

	stockage dans l’instance de l’objet board du nouveau mode du logiciel, à savoir EDIT (édition) ;

	vidage des champs de saisie ;

	mise à jour de l’apparence de l’interface ;

	affectation du focus (méthode focus(…)) au premier champ éditable (d’identifiant Name, qui correspond au champ contenant le nom affecté au contact), de manière à ce que l’utilisateur puisse procéder immédiatement à la saisie du nouveau contact.

N’oublions pas d’associer cette fonction à l’action idoine :

CALLBACKS = {
 …
 "New": ac_new
 }

Boutons de saisie (part6.py)

	Code source : lien sur GitHub ;

	exécution :

	sur Repl.it : bouton Run, n6 + entrée, clic sur URL,

	en local : python3 atlas-python/tutorials/Contacts/part6.py

On peut maintenant saisir un nouveau contact, mais il manque les boutons pour valider ou annuler cette saisie.

Adaptation de la gestion des contrôles interactifs

Pour afficher les boutons Submit et Cancel, on va désactiver l’élément style d’identifiant HideEdition (voir le fichier Head.html). Cet élément définit une règle permettant de cacher les éléments auxquels on a affecté la classe Edition, comme c’est le cas de l’élément div contenant les deux boutons Submit et Cancel (voir le fichier Main.html).

Désactiver cet élément style pour faire apparaître les boutons d’éditions ne suffit pas ; il faut également l’activer pour cacher ces boutons lorsque requis. On va, pour cela, modifier la fonction update_outfit(…) afin d’obtenir cela :

def update_outfit(board,dom):
 if board.state == State.DISPLAY:
 dom.disable_elements(FIELDS)
 dom.disable_element("HideDisplay")
 dom.enable_element("HideEdition")
 elif board.state == State.EDIT:
 dom.enable_elements(FIELDS)
 dom.enable_element("HideDisplay")
 dom.disable_element("HideEdition")

Confirmation/annulation d’une saisie

Maintenant que les boutons sont affichés, on va créer les fonctions associées.

Pour le bouton Cancel, on va demander confirmation de l’annulation et, en fonction de la réponse, ne rien faire, ou repasser en mode d’affichage après avoir vidé les champs de saisie :

def ac_cancel(board,dom):
 if dom.confirm("Are you sure?"):
 display_contact(None,dom)
 board.state = State.DISPLAY
 update_outfit(board,dom)

La méthode confirm(…) ouvre une boîte de dialogue affichant la chaîne de caractères passée en paramètre. Elle retourne True lorsque l’on clique sur le bouton OK (ou ce qui en tient lieu), ou False si on clique sur le bouton Cancel (ou ce qui en tient lieu), tout en fermant ladite boîte de dialogue.

Pour le bouton Submit, il s’agit de récupérer les valeurs des champs de saisie, de stocker lesdites valeurs dans ce qui tient lieu de base de donnée, à savoir la variable contacts, de rafraîchir la liste des contacts, et de rebasculer en mode saisie, tout cela sous condition que le champ Name contienne une valeur :

def ac_submit(board,dom):
 idsAndValues = dom.get_values(FIELDS)

 if not idsAndValues['Name'].strip():
 dom.alert("The name field can not be empty!")
 else:
 board.state = State.DISPLAY
 contacts.append(idsAndValues)
 display_contact(None,dom)
 display_contacts(dom)
 update_outfit(board,dom)

La méthode get_values(…) prend une liste de chaînes de caractères correspondants à des identifiants d’éléments, et retourne un dictionnaire avec, pour clefs, ces identifiants, et, pour valeurs, le contenu de ces éléments. Comme les identifiants sont identiques aux clefs d’un contact, ou peut stocker le dictionnaire obtenu tel quel.

La méthode alert(…) affiche simplement une boîte de dialogue contenant, comme message, la chaîne passée en paramètre, avec un bouton OK (ou équivalent) permettant de la fermer.

On termine en mettant à jour CALLBACKS pour affecter ces nouvelles fonctions aux actions adéquates :

CALLBACKS = {
 …
 "Cancel": ac_cancel,
 "Submit": ac_submit
}

Les autres boutons (part7.py)

	Code source : lien sur GitHub ;

	exécution :

	sur Repl.it : bouton Run, n7 + entrée, clic sur URL,

	en local : python3 atlas-python/tutorials/Contacts/part7.py

Il nous reste deux boutons à gérer : le bouton d’édition (Edit) et le bouton de suppression (Delete).

Adaptation de la classe Board

Avant toute chose, nous allons modifier la classe Board pour lui ajouter une variable (contactId) stockant l’index, dans la liste, du contact sélectionné. Cette variable est mise à None lorsqu’aucun contact n’est sélectionné :

class Board:
 def __init__(self):
 self.state = State.DISPLAY
 self.contactId = None

Nous allons également modifier ac_select(…) pour gérer cette nouvelle variable :

def ac_select(board,dom,id):
 board.contactId = int(id)
 display_contact(board.contactId,dom)
 …

Adaptation de la gestion des contrôles interactifs

La variable ajoutée à la classe Board va également nous servir pour l’affichage des boutons manquants.

La classe DisplayAndSelect est affectée à ces boutons (voir le fichier Main.html), dont la règle CSS pour cacher les éléments de cette classe est définie dans l’élément style d’identifiant HideDisplayAndSelect (voir le fichier Head.html).

On obtient donc cela :

def update_outfit(board,dom):
 if board.state == State.DISPLAY:
 …
 if board.contactId == None:
 dom.enable_element("HideDisplayAndSelect")
 else:
 dom.disable_element("HideDisplayAndSelect")
 elif board.state == State.EDIT:
 …
 dom.enable_elements(("HideDisplay","HideDisplayAndSelect"))
 …

Modification d’un contact

Passons à la fonction qui sera associée au bouton Edit. Elle reprendra en grande partie le contenu de la fonction ac_new(…) (on pourrait d’ailleurs en factoriser une partie) :

def ac_edit(board,dom):
 board.state = State.EDIT
 display_contact(board.contactId,dom)
 update_outfit(board,dom)
 dom.focus("Name")

Il faut aussi modifier la fonction ac_submit(…), pour tenir compte de son exécution dans le cadre de la modification d’un contact :

def ac_submit(board,dom):
 …
 else:
 board.state = State.DISPLAY
 if board.contactId == None:
 contacts.append(idsAndValues)
 else:
 contacts[board.contactId] = idsAndValues
 display_contact(board.contactId,dom)
 display_contacts(dom)
 …

Et également la fonction ac_cancel(…) pour la même raison :

 if dom.confirm("Are you sure?"):
 display_contact(board.contactId,dom)
 board.state = State.DISPLAY
 update_outfit(board,dom)

Et mettons à jour CALLBACKS :

CALLBACKS {
 …
 "Edit": ac_edit
}

Suppression d’un contact

Implémentons maintenant la fonction qui sera associée au bouton Delete, qui ne présente rien de particulier, au regard de ce qui a été abordé dans les précédentes sections :

def ac_delete(board,dom):
 contacts.pop(board.contactId)
 board.contactId = None;
 display_contact(None,dom)
 display_contacts(dom)
 update_outfit(board,dom)

Et mettons à jour CALLBACKS :

CALLBACKS {
 …
 "Delete": ac_delete
}

Bonus (part8.py)

	Code source : lien sur GitHub ;

	exécution :

	sur Repl.it : bouton Run, n8 + entrée, clic sur URL,

	en local : python3 atlas-python/tutorials/Contacts/part8.py

Comme vous avez pu le constater, la variable contacts est globale. Cela a pour conséquence qu’elle est commune à toutes les sessions. Cependant, une modification apportée à cette variable par une session n’est pas immédiatement visible dans toutes les autres sessions.

L’objet de cette section est d’apporter les modifications au code pour remédier à cela.

On va se limiter à rafraîchir, dès qu’une modification y est apportée, l’affichage de la liste des contacts dans l’ensemble des sessions.

Pour commencer, on va créer une fonction qui va rafraîchir la liste des contacts :

def ac_refresh(board,dom):
 display_contacts(dom)

Elle présente des similitudes, concernant les paramètres qu’elle reçoit, avec les fonctions associées à des actions (ac_edit(…), ac_submit(…)…). Cela n’a rien d’étonnant, car on va effectivement l’associer à une action :

CALLBACKS = {
 …
 "Refresh": ac_refresh
}

Et maintenant, on va remplacer, dans les fonctions qui modifient la liste des contacts, à savoir ac_submit(…) et ac_delete(…), chaque appel à la fonction display_contacts(dom) par un appel à atlastk.broadcast_action("Refresh").

def ac_submit(board,dom):
 …
 display_contact(board.contactId,dom)
 atlastk.broadcast_action("Refresh")
 update_outfit(board,dom)

def ac_delete(board,dom):
 …
 display_contact(None,dom)
 atlastk.broadcast_action("Refresh")
 update_outfit(board,dom)

atlastk.broadcast_action(…) lance l’action dont le libellé est passé en paramètre dans toutes les sessions, ce qui, en l’occurrence, va provoquer l’appel à la fonction display_contacts(…), et ainsi la liste des contacts sera rafraîchie dans toutes les sessions.

Le fait que la variable contacts soit globale, et donc modifiable par toutes les sessions, nécessiterait d’écrire du code supplémentaire, notamment pour en contrôler l’accès. De par l’absence de ce code, il est facile de mettre cette application en défaut. Néanmoins, ce code ne concernant pas directement le toolkit Atlas, il sort du cadre de ce document, et ne sera donc pas abordé ici.

Vers l’infini, et au-delà !

Dans le dépôt GitHub, et donc également présents sur Repl.it, on trouvera, en plus des fichiers sources correspondant aux différentes sections de ce document, un certain nombre d’exemples permettant d’explorer différents aspects du toolkit Atlas. En outre, comme déjà évoqué, le toolkit Atlas est disponible pour d’autres langages que Python.

Bien que seule la version Python soit vraiment utilisée, j’envisage de développer d’autres versions du toolkit Atlas. Histoire de faire un peu de veille technologique, ça sera probablement une version Rust et/ou Go.

Dans l’intervalle, de nouvelles fonctionnalités seront rendues disponibles, ainsi que, peut-être, de nouveaux documents comme celui-ci, ou encore de nouvelles bibliothèques s’appuyant sur le toolkit Atlas, à l’instar des bibliothèques EduTK (création d’exercices de programmation d’un nouveau genre) (dépêche), term2web (redirection de l’entrée et de la sortie standard dans un navigateur web) (journal) ou encore tortoise (la tortue du Logo dans un navigateur web) (journal)…

Aller plus loin

	
Première partie
(83 clics)

	
Homepage
(65 clics)

	
Sur GitHub
(40 clics)

	
Sur Repl.it
(22 clics)

	
API
(26 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/08b3ba8be45c4a77a682f05130949ac9e195ecda39c4d04a12e01aec.png
Address: [Diogenes Club, Pall Mal, Londres.

Phone: [use eegraph)
Warks far the Britiah govermment
Note: [arother of Hatees, Shertock.

New || ede | oelete

Name. Address Phone Note
Fiolmes, Sherlock 2218 Baker Street, Londres (use telegraph) | Great detectivel

‘Holmes, Mycroft Diogenes Club, Pall Mall, Londres | (use telegraph) [Works for the British government. Brother of Holmes, Shetlock.
Tintin Chateau de Moulinsart 421 Has a dog named Snowy.

“Tournesol, Tryphon (prof.) | Chateau de Moulinsart. 421 [Creator of the Bianca rose.

EPUB/imagessections41.png
python

powered

