

ECMAScript 2015 est approuvé

Posté par supergab le 29 juin 2015 à 09:09.
Édité par palm123, BAud, Kaane, ZeroHeure et DontShootMe.
Modéré par Nils Ratusznik.
Licence CC By‑SA.

Étiquettes :
aucune

[image: JavaScript]

La spécification ECMAScript 6e édition a été approuvée le 17 juin 2015 sous le nom ECMAScript 2015.

Parmi les nouveautés, il faut noter l'arrivée des classes, des modules, des fonctions fléchées, des boucles for-of, des générateurs, des proxies et de plusieurs nouvelles méthodes.

Sommaire

	
	Constante et variable

	Classe

	Fonction fléchée

	
Affecter par décomposition
	Décomposition d'un tableau

	Décomposition d'un objet

	Opérateur de décomposition

	
Paramètres
	Décomposition

	
Nouvelles notations
	Raccourcis pour les noms de propriétés

	Raccourcis pour les noms de méthodes

	Noms calculés pour les propriétés

	Itérateur

	Générateur

	Promise

	
Module
	Import

	Export

	
Réflexion
	Proxy

	Reflect

	
Nouvelles méthodes
	Object

	Array

	String

	Number

	Autres fonctionnalités

	
Conversion
	Compilateur

	API

Cette nouvelle édition permet de rattraper le retard face au JavaScript déjà implémenté dans les navigateurs. De ce fait, l'arrivée des mots clés const et let n'est pas si nouvelle. Par contre, la spécification ne correspond pas toujours aux implémentations, et certaines fonctionnalités devront être revues.

Constante et variable

La déclaration const permet de créer une constante nommée accessible uniquement en lecture.

const PI = 3.141593;
PI > 3.0;

L'instruction let permet de déclarer une variable dont la portée est celle du bloc courant, éventuellement en initialisant sa valeur.

function letTest() {
 let x = 31;
 if (true) {
 let x = 71; // c'est une variable différente
 console.log(x); // 71
 }
 console.log(x); // 31
}

Classe

Durant le développement de la spécification, plusieurs propositions ont été élaborées pour la gestion des classes. La solution retenue est plutôt minimale. La classe contient un constructeur et des méthodes. L'héritage simple est géré. À cela s'ajoutent des méthodes get et set, et des membres statiques.

class Fruit {
 constructor (couleur) {
 this.couleur = couleur;
 }
 static choisirCouleur() {
 return ['rouge', 'jaune', 'bleu', 'vert', 'orange', 'mauve'];
 }
 toString () {
 return "fruit";
 }
}

class Pomme extends Fruit {
 constructor (couleur, sorte) {
 super(couleur);
 this.sorte = sorte;
 }
 get saveur() {
 return this.sorte + " " + this.couleur;
 }
 toString () {
 return super.toString() + " : pomme";
 }
}

let maPomme = new Pomme('jaune', 'Délicieuse');

Fonction fléchée

Une expression de fonction fléchée (arrow function en anglais) permet d'avoir une syntaxe plus courte que les expressions de fonction et permet de lier la valeur this de façon lexicale. Les fonctions fléchées sont obligatoirement anonymes.

Les fonction fléchées peuvent être utilisées suivant deux syntaxes différentes :

param => expression

qui est équivalente à

function(param) {return param.expression}

ou sous la forme

([param] [, param]) => {instructions}

qui est équivalente à

function([param] [, param]) {
 instructions
}

Bien que la fonction fléchée soit nécessairement anonyme elle-même, elle peut néanmoins être mappée sur une variable.

var simple = a => a > 15 ? 15 : a;
var complexe = (a, b) => {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}

Une fonction fléchée ne définit pas son propre this. Elle utilise celui disponible dans son contexte.

var robert = {
 _nom: "Robert",
 _amis: [],
 imprimerAmis() {
 this._amis.forEach(f =>
 console.log(this._nom + " connaît " + f));
 }
}

Affecter par décomposition

L'affectation par décomposition (destructuring en anglais) est une expression qui permet d'extraire des données d'un tableau ou d'un objet grâce à une syntaxe dont la forme ressemble à la structure du tableau ou de l'objet. La syntaxe est semblable à ce qu'offre Perl ou Python.

Décomposition d'un tableau

var list = [1, 2, 3];
var [a, , b] = list;
[b, a] = [a, b];

Décomposition d'un objet

var o = {p: 42, q: true};
var {p, q} = o;

console.log(p); // 42
console.log(q); // true

var {p: toto, q: truc} = o;

console.log(toto); // 42
console.log(truc); // true

Opérateur de décomposition

L'opérateur de décomposition permet de développer une expression lorsque plusieurs arguments ou plusieurs éléments sont nécessaires.

var params = ["salut", true, 7];
var other = [1, 2, ...params]; // [1, 2, "salut", true, 7]
f(1, 2, ...params) === 9;

var str = "foo";
var chars = [...str]; // ["f", "o", "o"]

Paramètres

Un paramètre du reste permet de représenter un nombre indéfini d'arguments sous forme d'un tableau.

function f (x, y, ...a) {
 return (x + y) * a.length;
}
f(1, 2, "salut", true, 7) === 9;

Un paramètre par défaut permet d'initialiser des paramètres lors de l'appel de la fonction si la valeur passée est nulle (au sens où il n'y a aucune valeur de passée) ou undefined.

function f (x, y = 7, z = 42) {
 return x + y + z;
}
f(1) === 50;

Décomposition

Les valeurs des tableaux et les propriétés des objets passés en paramètre à une fonction seront décomposées.

function f ([name, val]) {
 console.log(name, val);
}
function g ({ name: n, val: v }) {
 console.log(n, v);
}
function h ({ name, val }) {
 console.log(name, val);
}
f(["bar", 42]);
g({ name: "foo", val: 7 });
h({ name: "bar", val: 42 });

Nouvelles notations

Raccourcis pour les noms de propriétés

Une notation raccourcie permet de créer une propriété qui porte le nom de sa variable d'origine.

var a = "toto", b = 42, c = {};
var o = { a, b, c };

Raccourcis pour les noms de méthodes

Une notation raccourcie permet de ne plus utiliser le mot-clé function.

var o = {
 property([parameters]) {},
 get property() {},
 set property(value) {},
 * generator() {}
};

Noms calculés pour les propriétés

Une expression entre crochets [] peut être calculée en tant que nom d'une propriété.

var prop = "toto";
var o = {
 [prop]: "hey",
 ["tr" + "uc"]: "ho"
};

Itérateur

L'instruction for-of permet de créer une boucle qui parcourt un objet itérable.

let fibonacci = {
 [Symbol.iterator]() {
 let pre = 0, cur = 1;
 return {
 next () {
 [pre, cur] = [cur, pre + cur];
 return { done: false, value: cur };
 }
 };
 }
}

for (let n of fibonacci) {
 if (n > 1000)
 break;
 console.log(n);
}

Générateur

Un générateur est une fonction qu'il est possible de quitter puis de reprendre. Le contexte d'un générateur (les liaisons avec ses variables) est sauvegardé entre les reprises successives.

function* range (start, end, step) {
 while (start < end) {
 yield start;
 start += step;
 }
}

for (let i of range(0, 10, 2)) {
 console.log(i); // 0, 2, 4, 6, 8
}

Promise

L'objet Promise (pour « promesse ») est utilisé pour réaliser des opérations de façon asynchrone. Une promesse est dans un de ces états :

	
en attente : état initial, la promesse n'est ni remplie, ni rompue ;

	
tenue : l'opération a réussi ;

	
rompue : l'opération a échoué ;

	
acquittée : la promesse est tenue ou rompue mais elle n'est plus en attente.

Le constructeur de l'objet Promise prend en argument une fonction avec deux paramètres : resolve et reject. Si la promesse est tenue, on appelle la fonction resolve() avec le résultat. Si elle est rompue, on appelle la fonction reject() avec la raison.

var p1 = new Promise((resolve, reject) => {
 setTimeout(() => resolve(1), 1000);
});

La méthode then() prend deux arguments qui sont deux fonctions callback à utiliser en cas de complétion ou d'échec de la Promise. Elle renvoie une Promise, on peut donc facilement enchaîner plusieurs appels à cette méthode.

p1.then((valeur) => {
 console.log(valeur); // 1
 return valeur + 1;
}).then((valeur) => {
 console.log(valeur); // 2
});

Module

Les modules permettent de créer de nouveaux espaces de noms, et ainsi limiter la pollution de l'espace de nom global.

Import

// someApp.js
import * as math from "lib/math";
console.log("2π = " + math.sum(math.pi, math.pi));

Export

// lib/math.js
export function sum (x, y) { return x + y };
export var pi = 3.141593;

Réflexion

Proxy

L'objet Proxy est utilisé afin de définir un comportement sur mesure pour certaines opérations fondamentales (par exemple, l'accès aux propriétés, les affectations, les énumérations, les appels de fonctions, etc.).

var handler = {
 get: function(cible, nom){
 return nom in cible ? cible[nom] : 37;
 }
};

var p = new Proxy({}, handler);
p.a = 1;
p.b = undefined;

p.a === 1;
p.b === undefined;
'c' in p === false;
p.c === 37;

Reflect

Reflect est un objet natif qui fournit des méthodes pour les opérations qui peuvent être interceptées (via les proxies). Reflect n'est pas une fonction (y compris pour construire un objet).

let obj = { a: 1 };
Object.defineProperty(obj, "b", { value: 2 });
obj[Symbol("c")] = 3;
Reflect.ownKeys(obj); // ["a", "b", Symbol(c)]

Nouvelles méthodes

Voici quelques exemples de nouvelles méthodes qui ont été ajoutées aux objets standards.

Object

La méthode Object.assign() est utilisée afin de copier les valeurs de toutes les propriétés directes (non héritées) d'un objet qui sont énumérables sur un autre objet cible.

var dst = { quux: 0 };
var src1 = { foo: 1, bar: 2 };
var src2 = { foo: 3, baz: 4 };
Object.assign(dst, src1, src2);

La méthode Object.setPrototypeOf() définit le prototype d'un objet donné avec un autre objet ou null.

function Parent(){}
function Child(){}
Object.setPrototypeOf(Child.prototype, Parent.prototype);
new Child instanceof Child; // true
new Child instanceof Parent; // true

Array

La méthode find() renvoie une valeur contenue dans le tableau si un élément du tableau respecte une condition donnée par la fonction de test passée en argument.

[1, 3, 4, 2].find(x => x > 3); // 4

String

Les méthodes startsWith(), endsWith() et includes() renvoient un booléen indiquant, respectivement, si la chaîne de caractères commence par, se termine par ou contient la deuxième chaîne de caractères fournie en argument.

"hello".startsWith("ello", 1); // true
"hello".endsWith("hell", 4); // true
"hello".includes("ell"); // true
"hello".includes("ell", 1); // true
"hello".includes("ell", 2); // false

La méthode repeat() construit et renvoie une nouvelle chaîne de caractères qui contient le nombre de copies demandées de la chaîne de caractères sur laquelle la méthode a été appelée, concaténées les unes aux autres.

" ".repeat(4 * depth);
"foo".repeat(3);

Number

La méthode Number.isSafeInteger() permet de déterminer si la valeur, passée en argument, est un entier représentable correctement en ECMAScript (c'est-à-dire un nombre compris entre -(253 -1) et 253 -1).

Number.isSafeInteger(42) === true;
Number.isSafeInteger(9007199254740992) === false;

Autres fonctionnalités

	Les nombres octaux et binaires sous une forme littérale

	Les tableaux typés

	Les gabarits de chaînes de caractères

	Les objets Map et Set et leurs équivalents avec références faibles

	Amélioration de la gestion de l'Unicode pour les chaînes de caractères et les expressions rationnelles

Il ne reste plus qu'à attendre que toutes ces nouveautés arrivent jusqu'à votre navigateur préféré.

Conversion

La conversion des nouveautés du ECMAScript 2015 vers le langage compris par les précédentes implémentations peut se faire à l'aide d'outils. Plusieurs nouveautés peuvent être implémentées par ECMAScript lui-même.

Compilateur

Il est possible de faire appel à un compilateur pour convertir les nouvelles fonctionnalités du langage vers du code compatible avec les anciennes implémentations. Il est plus facile de compiler le code depuis le serveur et envoyer seulement le résultat au client.

Babel est un de ces compilateurs. Tous les exemples proposés ici compilent avec Babel. Une application Web permet de tester ses connaissances depuis un navigateur sans installer quoi que ce soit. Par contre, elle ne traduit pas les nouvelles méthodes. Il faut faire appel à d'autres outils pour avoir une application fonctionnelle.

API

Des bibliothèques sont disponibles pour l'implémentation des nouvelles API.

core-js implémente les nouveaux objets et les nouvelles méthodes du langage. Elle s'utilise en complément d'un compilateur comme Babel.

Aller plus loin

	
Standard ECMA-262
(178 clics)

	
ECMAScript 6 — New Features
(264 clics)

	
ECMAScript sur Wikipédia
(358 clics)

	
Support d'ECMAScript 6 par Mozilla
(247 clics)

	
Le tableau de compatibilité (de Kangax)
(229 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections80.png

