

Encore une couche de rouille avec Rust 0.11


Posté par Collectif le 14 juillet 2014 à 20:54.
Édité par olivierweb, Leo, ariasuni, Nils Ratusznik, Nÿco, BAud, Sylvestre Ledru, claudex, Fabien, palm123, thargos, Dareg et Bruno Michel.
Modéré par bubar🦥.
Licence CC By‑SA.

Étiquettes :

	rust

	mozilla

	programmation

	firefox

	ubuntu











[image: Rust]



Rust 0.11 est sorti le 2 juillet 2014 ! Pour rappel, Rust est un langage de programmation système qui vise la performance et la sûreté. Il est développé par Mozilla, en parallèle d'un nouveau moteur de rendu expérimental écrit en Rust, Servo.


Rust est open source. Son développement est fait de façon ouverte sur GitHub et le code source est publié sous double licence Apache 2.0 et licence MIT.


[image: Rust]


Sommaire


	
Rapide présentation de Rust
	Objectifs du langage

	Exemple

	La communauté Rust

	Installation





	
Changements du langage
	Syntaxe

	Unboxed closures

	Bibliothèque standard





	
Autour du langage
	Computer Language Benchmarks Game

	Travis-CI

	Cargo

	Servo





	
Liens
	
Récapitulatifs
	This Week in Rust

	Meeting Weekly





	Évènements

	Présentations

	Tutoriels et documentation

	
Projets
	Nouveaux projets









	Conclusion



Rapide présentation de Rust

Objectifs du langage


L’objectif de Rust est d’être un langage pour l’écriture de programmes systèmes, habituellement écrits en C++. Tout comme C++, Rust permet un contrôle explicite de la gestion de la mémoire et d’autres fonctionnalités du système d’exploitation et du matériel, pour écrire des programmes les plus efficaces possibles.


Rust diffère cependant de C++ en mettant l’accent sur la sûreté : grâce à un système de types fort et à l’intégration dans ce système de types de nombre d’idiomes de gestion de la mémoire (on y retrouve les sémantiques d’ownership, de move, mais également des concepts plus innovants comme l’analyse des lifetimes), le compilateur est capable de détecter à la compilation un très grand nombre d’erreurs qui en C++ auraient pu mener à des bugs, voire à des failles de sécurité potentielles.


En outre, Rust amène également au monde de la programmation système et impérative certaines fonctionnalités récentes issues de la programmation fonctionnelle : types algébriques, filtrage par motif (pattern matching), fermetures lexicales (closures), etc.


En bref, Rust se veut un remplaçant à C++ : moins complexe, plus sûr et plus moderne.


Rust étant développé au sein de Mozilla, on peut se demander s’il est prévu que Rust soit utilisé dans FirefoxOS, ce n’est pas encore le cas, bien que des essais aient été faits.

Exemple


Voilà un exemple d’une implémentation simpliste de ls :


use std::os;

fn list_dir(path: &Path) {
    match std::io::fs::walk_dir(path) {
        // Le chemin donné par l’utilisateur n’est pas valide
        None => fail!("Unable to retrieve path: {}", path.display()),

        // Le chemin donné par l’utilisateur est valide, on liste les fichiers dedans
        Some(dir) => for file in dir {
            println!("{}", file.display());
        }
    }
}

fn main() {
    // On récupère les arguments passé via la ligne de commande
    let argv = os::args();

    // On vérifie que le nombre d’arguments donnés est bien conforme à ce qu’on attend.
    match argv.len() {
        // S’il n’y a pas d’argument, on utilise le répertoire courant comme répertoire à traiter
        1 => list_dir(&os::getcwd()),

        // S’il y a un argument, on le considère comme répertoire à traiter.
        2 => list_dir(&Path::new(argv[1])),

       // Sinon, on considère que l’utilisateur tape avec des moufles.
        _ => {
            println!("You must specify exactly zero or one path");
            os::set_exit_status(1);
        }
    }
}

La communauté Rust


Rust est développé par Mozilla, qui emploie une équipe à plein temps pour travailler sur le langage, mais aussi par de très nombreux contributeurs : de 51 pour la version 0.1, 450 pour la 0.10 à 559 pour cette dernière version. Des statistiques plus détaillées sont disponibles sur le site RustStat.


Plusieurs moyens de communication existent sur Internet :



	les canaux IRC Rust sur irc.mozilla.org :


	
#rust — discussion générale ;

	
#rust-gamedev — développement de jeux ;

	
#rust-internals — compilateur et bibliothèques ;

	
#rust-osdev —
développement de systèmes d’exploitation ;

	
#rust-fr — communauté Rust francophone ;





	la communauté Rust sur Reddit ;

	sur  Twitter, les mots-clés #rustlang et les comptes @rustlang et @rustlang_fr (peu utilisés) ;

	le wiki ;

	un site pour les coréens : http://rust-kr.org/.




Rust a aussi des pages sur Google Plus et sur Facebook, ainsi qu’un mot-clé #rustlang, mais il n’y a pas d’activité particulière dans ces pages ; ce sont des rappels de Reddit.


On peut aussi remarquer que désormais LinuxFr.org fait partie de la mouvance avec sa propre étiquette rust ;) qui permet de retrouver facilement toutes les dépêches et tous les journaux abordant ce sujet.


Les échanges se font aussi directement lors d’évènemements.

Installation


Le tutoriel officiel détaille l’installation sur les différentes plateformes, cependant il faut aller dans le wiki pour avoir plus de détails.


Les procédures d’installation déjà en place pour la version 0.8 (pour Windows, Ubuntu, Arch Linux et Gentoo) décrites dans la dépêche ad hoc sont toujours valables et ont été mises à jour pour cette version. Dès l’annonce, les paquets pour Ubuntu ont été générés dans le PPA hansjorg/rust, une compilation pour Arch est disponible dans le dépôt community et pour Gentoo, l’overlay rust contient un ebuild pour cette version.


Voici rapidement les commandes à utiliser pour installer la dernière version :


# Sous tout type de Linux 64bits
curl -O http://static.rust-lang.org/dist/rust-0.11.0-x86_64-unknown-linux-gnu.tar.gz
tar xfz rust-0.11.0-x86_64-unknown-linux-gnu.tar.gz
(cd rust-0.11.0-x86_64-unknown-linux-gnu/ && sudo ./install.sh)
# Sous Arch, disponible dans les paquets officiels
# Sous Gentoo
sudo layman -a rust
sudo emerge --autounmask =rust-0.11.0
# Sous Ubuntu
sudo add-apt-repository ppa:hansjorg/rust
sudo apt-get update
sudo apt-get install rust-0.11


Pour Fedora, vous pouvez compiler en Rust en regardant ici ou là.

Changements du langage


De nombreux changements de syntaxe, de sémantique, de bibliothèques sont advenus depuis la dernière version. Par exemple, le développeur de Angolmois a dénombré les changements qu’il a dû apporter à son code entre chaque version, depuis la 0.6. Moins de changements de code ont été nécessaires entre la 0.10 et la 0.11.

Syntaxe


Le symbole ~ a été remplacé par le type Box<T> pour dénoter les owned boxes, et par le mot-clé box pour l’allocation. De plus, les tableaux ~[T] et les chaines ~[str] ont été remplacées respectivement par Vec<T> et String. Comme il s’agit d’un changement très important et souvent mal compris par la communauté, voici une brève explication :


La précédente syntaxe causait de nombreuses confusions, du fait que ~[T] et ~str étaient en fait des structures particulières, et non pas de simple pointeurs ~ vers [T] ou str, ces derniers n’étant pas des types en Rust. Ceci menait à la bizarrerie syntaxique suivante :


// x est de type ~str, une chaîne allouée sur le tas, redimensionnable
// du fait qu’elle possède la mémoire pointée
// de même, y est de type ~[T], un vecteur redimensionnable alloué sur le tas
let x = ~"foo";
let y = ~[1, 2, 3];

// x est de type ~(&'static str), un pointeur vers une zone allouée sur le
// tas contenant un pointeur vers une chaîne statique
// y est de type ~([T, .. 3]), un pointeur vers une zone allouée sur le tas
// contenant un tableau statique à 3 éléments
let x = ~("foo");
let y = ~([1, 2, 3]);


Les structures ~[T] et ~str étaient en fait des structures situées sur la pile, contenant 3 champs :



	un pointeur vers une zone mémoire sur le tas ;

	la taille de cette zone, ou « capacité » ;

	et la partie de cette zone occupée par des données valides, soit la longueur de la chaine ou du tableau.




Ces structures implémentent des chaines et des tableaux dits « redimensionnables », car lors d’un ajout, si la capacité n’est plus suffisante, on met à jour le pointeur vers une zone plus grande, et on recopie depuis l’ancienne. Puisque ces structures possèdent leurs données et disposent de sémantiques de déplacement, personne ne possède de pointeur sur l’ancienne zone, qui peut alors être libérée en toute sûreté.


La sémantique de Rust étant devenue suffisamment puissante pour permettre d’exprimer ces propriétés sur des types tiers, ces structures ne nécessitent plus en aucun cas d’être intégrées au compilateur, et ont été déplacées vers la bibliothèque standard, sous les noms de String et de Vec<T>. On peut d’ailleurs noter que String n’est qu’une couche d’abstraction sur Vec<u8> fournissant des méthodes supplémentaires pour garantir que les données sont une chaîne UTF-8 valide.


De même, la syntaxe ~ pour représenter un simple pointeur vers le tas possédant la zone pointée (owned box, ou owning pointer), a été remplacée par Box<T> pour désigner le type et par l’expression box foo réalisant une allocation dynamique et renvoyant un Box<T>.


Cette syntaxe n’ayant plus rien en commun avec Stringet Vec, il n’y a plus de confusion possible. Si foo est de type T, box foo renverra toujours un Box<T> (équivalent de l’ancien ~T), de même que box (foo).



	let x = box "foo";    // x est de type Box<&'static str>.

	let x = box ("foo");  // pareil.

	let x = box 5;        // x est de type Box<int>.




Si l’on désire maintenant utiliser les chaînes et les tableaux redimensionnables, il faut être explicite et utiliser les noms String et Vec :


// la méthode from_str alloue une zone de mémoire suffisamment grande
// et y recopie le contenu d’une autre chaine, ici une chaine statique
// foo est de type String
let foo = String::from_str("foo");

// from_slice alloue une zone de mémoire suffisamment grande et y recopie
// le contenu d’un autre tableau, ici un tableau statique
// bar est de type Vec<int>
let bar = Vec::from_slice([1, 2, 3]);

// on pourrait également utiliser cette version, équivalente, qui utilise
// la macro vec!, fournissant une façon pratique d’initialiser des Vec
let bar = vec!(1, 2, 3);


Cette nouvelle syntaxe montre bien que String et Vec sont en fait des structures sur la pile référençant une zone mémoire redimensionnable sur le tas.


Ces types sont munis d’un destructeur, ce qui garantit qu’ils disposent de déplacement (move semantics) et qu’ils possèdent les données pointées.


Ceci évite donc la confusion entre ces types et Box<T> qui n’ont rien à voir entre eux.


Par ailleurs, écrire let x = ~"foo" pouvait faire oublier au programmeur qu’il s’agissait d’une opération couteuse. On avait l’impression qu’il suffisait de prendre un pointeur sur une string, alors qu’il faut en fait allouer une zone sur le tas de la bonne taille, puis recopier la chaine. String::from_str est plus explicite, d’autant plus qu’elle est documentée, du fait qu’elle soit dans la bibliothèque standard et non une fonctionnalité intégrée au langage.


Enfin, bien que ~[] et ~str soient encore disponibles pour le moment, ils devraient être supprimés rapidement. Leur utilisation dans la base de code du compilateur et de la bibliothèque standard a déjà été pratiquement supprimée.


Notons que le pointeur @ qui a été placé derrière une feature gate (il devait être activé explicitement pour pouvoir être utilisé) lors de la sortie de rust 0.10 a été lui aussi été complètement supprimé.

Unboxed closures


Le système de fermetures (ou closures) de Rust a été complètement repensé.


Rust offrait actuellement deux types de fermetures : les stack closures et les « procédures ».


Les stack closures, qui capturaient les variables libres depuis leur environnement par référence. Ce type de fermetures était très utilisé dans du code Rust, mais du fait qu’elle ne possédaient pas leur environnement, elles n’étaient pas à proprement parler des valeurs de première classe. En particulier, il n’était possible de renvoyer une clôture sur la pile (stack closure) qu’à condition de la lier à une durée de vie (lifetime).


// la fonction get_adder prend un entier et renvoie une fermeture
// additionnant cet entier (capturé) à un autre passé en argument
fn get_adder(x: uint) -> (|uint| -> uint) {
    // on renvoie une fonction prenant y et renvoyant x + y
    // x est ici capturé par référence
    |y| { x + y }
}

fn main() {
    let add5 = get_adder(5);
    let r = add5(3);
}


Ce code produisait une erreur du borrow-checker. Si ce code avait été exécuté, l’appel de add5 aurait tenté d’accéder à x via une référence pointant vers une zone mémoire qui n’est plus valide, x étant détruit à la fin de la fonction get_adder. On aurait pu paramétrer les types par des lifetimes et passer x à get_adder par référence, mais cela n’aurait pas totalement résolu le problème. Il n’aurait en aucun cas été possible d’utiliser add5 en dehors de la portée des variables capturées (ici, x).


Les « procédures » (notées proc), qui capturaient leur environnement par copie (en effectuant éventuellement un move). Ces fermetures étaient des valeurs de premier ordre, mais elles permettaient ensuite au code de la fermeture d’effectuer un move depuis les variables capturées au moment où la fermeture était exécutée. Ceci permettait à ces fermetures d’utiliser leur environnement de n’importe quelle façon, mais ne permettait de les appeler qu’une seule fois, car leur environnement était « consommé » par l’appel de la fermeture, du fait des moves possibles.


fn get_proc(x: uint) -> (proc(uint) -> uint) {
    proc(y) { x + y }
    // x a été capturé par valeur. Si x avait été
    // doté de move semantics, toute utilisation de
    // x ici aurait été une erreur car il aurait été
    // déplacé dans l’environnement de la fermeture
}

fn main() {
    let add5 = get_proc(5);
    let huit = add5(3);

    // erreur: l’appel de la procédure prend l’environnement par move
    // rustc détecte ici l’utilisation d’une valeur déplacée et émet
    // une erreur. Les procs ne sont donc appelables qu’une seule fois
    let neuf = add5(4);
}


La proposition des unboxed closures rend le système de fermetures bien plus souple.


Toutes les fermetures captureront désormais leur environnement par copie. Les références étant des valeurs comme les autres en Rust, il sera toujours possible de capturer par référence en capturant explicitement une référence plutôt que la variable :


fn get_adder(x: uint) -> (|uint| -> uint) {
    // x est ici capturé par valeur (copie). Si x avait été
    // d’un type doté de sémantiques de déplacement, il n’aurait
    // plus été utilisable autrement que par la fermeture car
    // il aurait été déplacé vers son environnement, tout comme
    // dans l’exemple avec proc
    |y| { x + y }
}

// il est possible d’obtenir une capture par référence en capturant
// explicitement une valeur dont le type est une référence. On fait
// alors une copie de la référence
// cet exemple reproduira le comportement précédent. La fermeture
// est liée à la durée de vie de x
fn get_adder_ref(x: uint) -> (|uint| -> uint) {
    // on crée explicitement une référence
    let ref_on_x = &x;

    // la fermeture capture une copie de la référence
    // et pas une copie de x
    |y| { *ref_on_x + y }
}


Les unboxed closures seront implémentées comme des objets ayant chacun leur type unique contenant leur environnement. Pour refléter leur capacité à être invoquées comme des fonctions, elles devront maintenant implémenter un trait. Plusieurs traits seront introduits, pour représenter tous les cas possibles d’utilisation.


Tout d'abord, Fn : au moment de l’appel, le code reçoit son environnement via une référence mutable. La fermeture peut donc muter son environnement, mais ne peut pas effectuer de move depuis l’environnement. La fermeture est donc appelable plusieurs fois. Ce trait reflète les sémantiques d’appel des anciennes stack closures, tout en permettant de choisir au moment de la création de la fermeture si la copie se fait par copie ou par référence.


FnShared est similaire au précédent, à l’exception que la fermeture reçoit une référence immutable sur son environnement. Elle ne peut donc pas le modifier. L’avantage principal de ces fermetures est qu’elles peuvent être échangées de façon sûre entre différentes tâches s’exécutant de façon concurrente, d’où son nom.


Enfin, FnOnce implémente des sémantiques d’appel des anciennes procédures en passant à la fermeture son environnement par valeur. La fermeture peut alors librement effectuer des moves depuis l’environnement, qui est alors consommé. Une fermeture ne pourra être appelée qu’une seule fois via ce trait.


La syntaxe des fermetures ne sera donc plus que du sucre syntaxique sur la déclaration d’un type implémentant le trait approprié et la création d’une valeur unique de ce type. Mais il sera également possible de créer à la main de tels objets, et d’implémenter par exemple plusieurs comportements possibles. (à vérifier)


Le système de types de Rust ayant connaissance des sémantiques de déplacement, l’implémentation des unboxed closures ne requerra pratiquement aucune modification du système de types. Les règles actuelles garantissent déjà le comportement décrit ci-dessus en fonction de la façon dont l’environnement est passé au code de la fermeture lors de l’appel.

Bibliothèque standard


La bibliothèque standard a été découpée en plusieurs petites bibliothèques indépendantes. libcore, qui contient les fonctionnalités les plus basiques de la bibliothèque d’exécution (runtime library) du langage est ainsi autonome, et peut être utilisée dans des contextes tels que les systèmes d’exploitation ou la programmation embarquée.


Rust dispose maintenant d’une implémentation des expressions rationnelles, inspirée de RE2. Elle a été intégrée dans la distribution officielle en tant que libregex. libregex_macros fournit une extension de syntaxe, regex!, qui permet à rustc de compiler les expressions rationnelles en même temps que le reste du code.


En vrac, quelques autres modifications notables :



	attention ! test::BenchHarness a été renommée en test::Bencher ;

	la définition des vecteurs doit être plus précise : [1, 2] n’est plus acceptée, il faut spécifier le type, par exemple ainsi [1u, 2] ;

	utilisation de Result<T, Error> dans les types de retour de l’interface Serialize ;

	ajout d’une caisse GraphViz ;

	
réduction de la taille des exécutables ;

	si vous vous demandez ce que Rust et Lovecraft on en commun, allez voir par ici ;

	
première bibliothèque stabilisée pour la version 1.0 : std::mem.



Autour du langage


Le code du dépôt Rust sur Github (compilateur, bibliothèque standard, tests unitaires et de performance ainsi que les tutoriels) a atteint les 30 000 commits le 25 juin. Voici un florilège des évènements notables :



	prise en charge de Windows 64 bits ;

	le site Are we web yet?


	un rapprochement avec Dart ?

	
refonte de la documentation ;

	nouvelle URL pour la documentation : http://doc.rust-lang.org/ ;

	
deux équipes ont choisi Rust dans la compétition Hello World Open ;

	le code de Rust est désormais hébergé sur Github ;

	Rust apparait en bonne position dans une comparaison de performances d’implémentations dans différents langages ;

	enfin, un petit guide pour la compilation croisée vers ARM.



Computer Language Benchmarks Game


Ce test de performance dont nous avions parlé dans la précédente dépêche sur Rust continue d’être mis à jour. Les sources des programmes de test sont en effet inclus dans les sources même de Rust (voir les fichiers shoutout-*). Les instructions SIMD sont ajoutées aux tests à l’aide du module std::unstable::simd, le test shootout-mandelbrot s’exécute ainsi presque deux fois plus vite.





	Test
	×
	CPU secs
	Elapsed secs
	Memory KB
	Code B
	≈ CPU Load





	Fasta
	1.7
	4.66
	4.66
	780
	1283
	0% - 1% - 1% - 100%



	Pidigits
	7.2
	12.48
	12.49
	1,708
	677
	0% - 1% - 0% - 100%



	Mandelbrot
	10
	52.22
	52.23
	780
	633
	1% - 100% - 0% - 0%






http://www.reddit.com/r/rust/comments/27dc75/what_happened_to_the_shootout_benchmarks/

Travis-CI


Les tests sur Travis-CI utilisant rust-nightly sont restés bloqués à la version du 18 avril. Travis-CI utilise Ubuntu Precise comme environnement et la construction automatique sur Launchpad s’est arrêtée car la version de gcc est trop ancienne. Le script configure de Rust ne prenait pas en charge la définition des variables d’environnement CC/CXX pour changer de version de compilateur. Des correctifs ont été proposés le 2 mai et intégrés depuis. La construction continue chez Launchpad a repris début juin.

Cargo


Cargo est le nouveau gestionnaire de  paquets annoncé le 17 mars. Yehuda Katz et Carl Lerche réalisent son développement.


Le 21 juin, le gestionnaire n’est pas encore en version alpha mais permet de résoudre les dépendances et de les récupérer depuis Git. La version alpha est publiée le 23 juin en même temps que le site web associé pour sa documentation : crates.io. Un PPA pour Ubuntu est disponible à ppa:cmrx64/cargo, pour notamment pouvoir utiliser Cargo sur Travis-CI.

Servo


Servo est un projet expérimental de Mozilla visant à construire un moteur de navigateur Web pour la nouvelle génération d’appareils : téléphones portables, processeurs multicœurs et GPU haute-performance, en tirant parti de la sûreté de Rust, et de ses facilités pour exprimer la concurrence. Il est actuellement développé pour Mac OS X et Linux 64 bits. Il a récemment passé avec succès le test Acid2, comme planifié dans les objectifs du second trimestre.


Servo: Designing and Implementing a Parallel Browser.

Liens


Notes de version.

Récapitulatifs

This Week in Rust


Si vous voulez suivre le mouvement de tout ce qui se passe à propos de Rust sans avoir à lire le détail des commits, des annonces sur la liste de diffusion, de Reddit ou de Twitter, le blog This Week in Rust fait une synthèse hebdomadaire des nouveautés et actualités autour de Rust :



	
05/04 ;

	
13/04 ;

	
26/04 ;

	
05/05 ;

	
11/05 ;

	
17/05 ;

	
24/05 ;

	
This Week in Rust devient un site à part : http://this-week-in-rust.org/ ;

	
10/06 ;

	
14/06 ;

	
22/06 ;

	
30/06.



Meeting Weekly


https://github.com/mozilla/rust/wiki/Meetings

Évènements


De nombreux évènements sont organisés autour de Rust. La rencontre parisienne se répète tous les 3es lundis du mois dans les locaux de Mozilla.



	Paris, le 21 avril — Rust MeetUp ;

	Londres, du 25 au 28 avril — Ludum Dare 29 ;

	San Francisco, le 8 mai — Rust MeetUp : vidéos disponibles sur air.mozilla : Testing Rust and Fuzzing compilers de John Regehr, QuickCheck de Andrew Gallant et Testing Hackathon de Erick Tryzelaar ;

	Paris, le 19 mai — Rust MeetUp, sur Servo ;

	Pittsburgh, le 19 mai — Rust MeetUp : Code and Supply ;

	Seattle, le 22 mai — Rust MeetUp  ;

	Paris, le 16 juin — Rust MeetUp ;

	San Francisco, le 10 juin — Dinnerup ;

	Brooklyn, le 21 juin — Rust MeetUp ;

	Pittsburgh, le 23 juin — Rust MeetUp : Code and Supply ;

	Londres, le 26 juin — First Rust MeetUp in London : Awesome Rust, Servo: the parallel browser engine ;

	San Francisco, le 26 juin — Rust Meetup, vidéos disponibles sur air.mozilla.org : Library Ecosystem for Rust Game Development, OpenGL and Rust, Voyager, Reducing VR latency with Rust ;

	Lisbonne, le 2 juillet — Rust MeetUp : Goals and crash course through the tutorial ;

	San Francisco, juillet — Rust Meetup : WebTech ;

	Seattle, le 7 juillet — Rust MeetUp ;

	Hanovre, le 10 juillet — Rust MeetUp ;

	Paris, le 21 juillet — Rust MeetUp ;



Présentations


Il y aura peut-être bientôt des cours de Programmation Fonctionnelle Système en Rust à Mozilla Paris.



	A More Detailed Tour of the Rust Compiler

	Rust Me, I’m a Developer

	
Guaranteeing memory safety in Rust  de Nicholas Matsakis

	
Programmation système robuste avec Rust de Geoffroy Couprie et Clément Delafargue à Devoxx France

	What is Rust for?

	
Snowmew’s Architecture : Part 1, Part 2. Snowmew est un moteur de jeu.



Tutoriels et documentation



	Getting Rusty

	Une présentation, proposée par Steve Klabnik, a été ajoutée sur le site : A 30-minute Introduction to Rust. Elle porte sur les points clefs de Rust : la possession des données (ownership), la sémantique de déplacement ("move semantics"), et l’emprunt de données (borrowing). Steve Klabnik vient par ailleurs d’être embauché par Mozilla pour six mois afin de contribuer à la documentation à partir du 23 juin.

	Nouveau tutoriel Rust by example


	
Rust for C++ programmers :


	part 1: Hello world

	an intermission - why Rust

	part 2: control flow

	part 3: primitive types and operators

	part 4: unique pointers

	part 5: borrowed references

	part 6: Rc, Gc, and * pointers

	part 7: data types





	
Rust class, un cours de système dans lequel Rust est utilisé.

	Practicality With Rust: Setting Up A Project

	La documentation Rust est disponible sur Dash (visualiseur de documentation hors-ligne sur Mac).



Projets



	
rust-http va être réécrit en une boîte à outils pour le développement web : teepee.rs. Les réflexions sur sa conception sont partagées sur le blog de Chris Morgan : a careful look at the HTTP/1.1 Status-Line, My first look at the Status-Line, header representation.

	
rust-rosetta continue d’implémenter des exemples de Rosetta Code. 89 exemples sont disponibles au 8 juillet.



Nouveaux projets



	
rust-empty, un makefile basique pour commencer un projet Rust.

	
greffon IntelliJ pour la prise en charge de Rust.

	
Un compte Twitter a été ouvert pour publier des astuces sur Rust.

	Rust est disponible sur site d’entrainement à la programmation exercism.io.

	
Godbolt, un compilateur interactif de code Rust (affiche le code assembleur résultant).

	
Un snake pour GameBoy Advance, il est probable que d’autres jeux très basiques suivront.

	
ClearCrypt, une bibliothèque de chiffrement de transport utilisant CurveCP ou Noise.

	
rust-nanomsg, une bibliothèque pour nanomsg.

	Dans Atom,


	
atom-racer ajoute la complétion de code pour Rust dans Atom, l’éditeur de GitHub récemment libéré, en utilisant Racer et Autocomplete+


	
atom-language-rust ajoute la coloration syntaxique.





	
iomrascálaí une IA pour les jeux  Go/Weiqi/Baduk.

	
criterion.rs, une bibliothèque de test de performance traduite de la bibliothèque Haskell criterion.

	
scheme.rs, une implémentation de Scheme en Rust.

	
rspt, un moteur de rendu physique utilisant OpenGL 2.1, Licence ??.

	
Floor, un cadriciel web inspiré de ExpressJS, licence MIT.



Conclusion


La liste des améliorations pour cette version de Rust n’est pas bien longue: modification des types Vectors, et les Strings en préparation des types à taille dynamique (DST), la suppression de ~ et continuation du découpage de la bibliothèque standard de Rust. Tout cela a nécessité beaucoup de travail de fond, et c’est le signe que Rust gagne en maturité.


Côté communauté, on a des développeurs payés par Mozilla et Samsung qui travaillent sur Rust et Servo, des dizaines de nouveaux projets, la prise en charge de Rust dans de plus en plus de logiciels et d’environnements, et une présence sur le web toujours plus importante, Rust semble promis à un bel avenir.


Aller plus loin


	
Site officiel de Rust
(410 clics)


	
Annonce de la version 0.11
(41 clics)


	
Tag `rust` sur Linuxfr (journaux et dépêches sur Rust)
(120 clics)









EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/1ebd579d964ee85023f16202a23cb1c391212e11e90db6e29dc33348.png





EPUB/imagessections97.png





