

Escenadil, un moteur de jeu d’aventure en mode texte

Posté par anaseto le 24 septembre 2012 à 10:44.
Édité par Davy Defaud, baud123, claudex, Benoît Sibaud, Florent Zara et Bruno Michel.
Modéré par claudex.
Licence CC By‑SA.

Étiquettes :

	jeux_linux

	perl

[image: Jeu]

Escenadil est un projet libre de moteur de jeu d’aventure en texte, sous la même licence que Perl, que j’ai commencé au mois d’août. Le but est de pouvoir facilement écrire une petite aventure (voire pas si petite) en éditant un simple fichier YAML.

Concept de « scène »

Le jeu s’organise autour de l’idée de « scène » (_escena_, en espagnol) : une scène se présente comme un texte avec un certain nombre de choix possibles, lesquels nous font passer à d’autres scènes. Les choix peuvent se présenter de façon connue à l’avance (choix a,b,c…) ou non, auquel cas un choix est déterminé par une entrée texte du joueur.

Le jeu fournit aussi quelques variables, pour simuler un inventaire d’objets, par exemple ; ou l’usage de drapeaux, pour déterminer si un certain choix doit ou non être présent, suivant les circonstances.

Comment créer une aventure

C’est plutôt facile, il suffit de rédiger un texte en YAML, en suivant une structure qui correspond au concept de scène. En général, ça ressemble à quelque chose comme :

--- # nom de la scène initiale
"ma_première_scène"

--- # Quelques données
nums:
 argent: 20
flags:
 sait_parler_elfique: 1

--- # Puis viennent les scènes
ma_première_scène:
 name: "Texte court descriptif (facultatif)"
 text: "Tu vois un vieil elfe dans la forêt cherchant des champignons."
 choices:
 premier_choix:
 text: "Vendre des champignons au vieil elfe"
 go: "nom de la scène suivante"
 effects:
 - "num+:argent:10"
 - ...
 requirements:
 - "flag:sait_parler_elfique"
 - ...
 autre_choix:
 ...
autre_scène:
 ...

Pour plus de flexibilité, une notion d’*état* offre la possibilité d’afficher plusieurs textes différents dans une même scène, suivant les circonstances. On écrit dans ce cas :

ma_première_scène:
 ...
 state: "mon_état"
 text:
 mon_état: "texte"
 autre_état: "autre texte"
 ...

L’état peut être modifié grâce aux effets. Par exemple, l’effet state:ma_première_scène:autre_état change l’état de la scène, et si l’on revient sur celle‐ci, un autre texte sera affiché. On peut utiliser les données dans les effets et pré‐requis. Voici quelques exemples :

	on peut activer des flags avec flag:nom, et les utiliser pour ne faire apparaître certains choix que lorsque l’on veut, ou faire apparaître aussi du texte additionnel dans certains cas grâce à la clé text_flags ;

	la table nums permet de faire des comparaisons (<,>,=) utiles pour les prérequis, et des additions grâce aux effets ;

	la table texts permet de conserver une table type clé: "texte". Elle est utile par exemple pour récupérer des entrées du joueur et les réutiliser ensuite en les interpolant dans le texte en mettant la clé entre deux « @ ».

Tester le fichier YAML

Le moteur de jeu s’accompagne aussi d’un petit script pour tester quelques propriétés d’un fichier YAML contenant une partie, pour éviter quelques erreurs communes. Il vérifie, par exemple, que dans un go:"nom_de_scène", la scène en question est bel et bien définie.

Plus d’informations

Pour le moment, il n’y a pas d’autre documentation que la documentation pod et une page man générée avec. Sur la page du site, on trouve un lien vers le dépôt Git. Il y a aussi une archive tar.gz au même endroit. Le jeu a les dépendances suivantes :

	Perl (v 5.10 ou plus, testé avec avec la v 5.12 et v 5.16) ;

	Curses::UI ;

	
YAML::XS (YAML marche aussi avec une petite modification, voir le
fichier readme.markdown dans les sources) ;

	
List::MoreUtils.

Points à améliorer

Il faudrait que j’écrive une histoire, afin qu’il y ait un bon exemple (il n’y a qu’un petit exemple en anglais assez ridicule pour le moment)… Et sans doute beaucoup de choses, auxquelles je n’ai pas pensées. L’idée c’est de rajouter des fonctionnalités sans que ça ne rende plus compliqué d’écrire une histoire simple, et qu’on n’ait pas besoin d’autre chose que d’un fichier YAML pour les données.

[image: Pièce 1 du concours Plee the Bear]

Aller plus loin

	
Page du projet Escenadil
(672 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/12d36db4790146c6f64c1be06ee813974c1b768857f9d0a1303cf7c5.png

EPUB/imagessections15.png

