

Et si la meilleure des cartes RAID était libre ?

Posté par Joris Dedieu (site web personnel) le 10 février 2014 à 00:16.
Édité par Nils Ratusznik, Nicolas Casanova, Tonton Th, palm123, NeoX, ZeroHeure, Jiehong, jcr83 et Nÿco.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	système_de_fichiers

	zfs

	debian

[image: Technologie]

ZFS comme son nom ne l'indique pas n'est pas juste un système de fichiers. Plus je l'utilise plus je dirais même que le système de fichiers n'est qu'une des fonctionnalités sympa de ZFS. ZFS est avant tout un moyen d'organiser de façon efficace ses ressources de stockage, une sorte de carte RAID surpuissante.

NDA : merci à Nicolas Casanova, Tonton Th, NeoX, Jiehong, jcr83 et ZeroHeure pour leur relecture attentive

Sommaire

	Histoire d'une libération

	
Zpool
	Des disques

	
Commandes pour survivre
	Configuration

	Maintenance

	Le cache

	Gestion des écritures synchrones

	
Les volumes
	Propriétés

	Les captures

	Savoir recevoir

	Réplication et haute dispo

	Conclusion

Histoire d'une libération

L'histoire dit que Jeff Bonwick aurait commencé à développer ZFS en 2001, mais il faudra attendre le début de l'année 2005 et Solaris 10 pour pouvoir en profiter.

Solaris 10, c'est aussi la libération du code sous licence CDDL et l'écosystème OpenSolaris qui, depuis le rachat de Sun par Oracle, se fédère autour du projet Illumos avec des distributions comme OpenIndiana, SmartOS ou NexentaStor.

La licence CDDL est un dérivé de la licence MPL reconnue comme libre par la FSF et OpenSource par l'OSI. Hélas elle est à la fois incompatible avec la GPL et la licence BSD. C'est pour cela entre autre que ZFS ne peut pas être compilé en dur dans le noyau FreeBSD mais doit être chargé sous forme d'un module externe.

Oracle ne publiant plus de versions OpenSource, des développeurs d'Illumos, de FreeBSD, de ZFS on Linux et de ZFS OSX, mais également de nombreuses entreprises ont fondé en septembre 2013 le projet OpenZFS, visant à poursuivre et coordonner le développement du système de fichier.

Le premier changement fut que les numéros de version furent abandonnés au profit des feature flags (masque permettant de savoir si telle ou telle fonctionnalité est supportée). Ainsi sous FreeBSD on est passé de la version 28 à la version 5000 !

Le projet travaille sur la qualité du code et en particulier les tests, la portabilité ainsi que les futures fonctionnalités.

Autre fait marquant dans l'actualité de ZFS, le 28 mars 2013 le projet ZFS on Linux a publié sa première version stable, ce qui semble faire de ZFS le système de fichier le plus largement géré depuis le vFAT (ou presque).

ZFS est en effet aujourd'hui porté sous :

	Solaris

	IllumOS et ses dérivés

	FreeBSD

	NetBSD

	Linux

	Mac OSX

À noter que son architecture d'origine (Solaris Sparc / Solaris x86), lui a permis d'être insensible aux problèmes de boutisme (Endianness).

Zpool

Un zpool est une entité qui regroupe des ressources matérielles telles que des disques, de la mémoire, des périphériques d'échange rapide (SSD entre autres). La commande homonyme sert à contrôler le tout.

Des disques

Les disques servent au stockage des données. Ils peuvent être configurés en miroir (raid 1) en stripe (raid 0) ou en raid Z{2,3} (variante autour du raid5/6) comportant un nombre plus ou moins grand de disques de parité (1 pour le raidZ, 2 pour le raidZ2, 3 pour le raidZ3).

Par exemple, pour créer l'équivalent d'un raid10, on agrège deux miroirs :

root@host:~# zpool create storage mirror da0 da1 mirror da2 da3
root@host:~# zpool status storage
 pool: storage
 state: ONLINE
 scan: resilvered 481G in 7h50m with 0 errors on Mon Oct 14 19:07:10 2013
config:
 NAME STATE READ WRITE CKSUM
 storage ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 da0 ONLINE 0 0 0
 da1 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 da2 ONLINE 0 0 0
 da3 ONLINE 0 0 0

On notera que le stripe est implicite. Autre exemple, un raidZ3 :

root@host:~# zpool create nfs raidz3 c4t0d0 c4t1d0 c4t2d0 c4t3d0 c4t4d0 c4t5d0 c4t6d0 c4t7d0 c4t8d0 c4t9d0 c4t10d0 c4t11d0 c4t12d0 c4t13d0 c4t14d0 c4t15d0 c4t16d0 c4t17d0 c4t18d0 c4t19d0 c4t20d0 c4t21d0 c4t22d0
root@host:~# zpool status nfs
 pool: nfs
 state: ONLINE
 scan: resilvered 314G in 34h30m with 0 errors on Thu Dec 12 22:50:17 2013
config:
 NAME STATE READ WRITE CKSUM
 nfs ONLINE 0 0 0
 raidz3-0 ONLINE 0 0 0
 c4t0d0 ONLINE 0 0 0
 c4t1d0 ONLINE 0 0 0
 c4t2d0 ONLINE 0 0 0
 c4t3d0 ONLINE 0 0 0
 c4t4d0 ONLINE 0 0 0
 c4t5d0 ONLINE 0 0 0
 c4t6d0 ONLINE 0 0 0
 c4t7d0 ONLINE 0 0 0
 c4t8d0 ONLINE 0 0 0
 c4t9d0 ONLINE 0 0 0
 c4t10d0 ONLINE 0 0 0
 c4t11d0 ONLINE 0 0 0
 c4t12d0 ONLINE 0 0 0
 c4t13d0 ONLINE 0 0 0
 c4t14d0 ONLINE 0 0 0
 c4t15d0 ONLINE 0 0 0
 c4t16d0 ONLINE 0 0 0
 c4t17d0 ONLINE 0 0 0
 c4t18d0 ONLINE 0 0 0
 c4t19d0 ONLINE 0 0 0
 c4t20d0 ONLINE 0 0 0
 c4t21d0 ONLINE 0 0 0
 c4t22d0 ONLINE 0 0 0

Un disque peut également être configuré en HotSpare pour remplacer à la volée un disque défaillant :

zpool add tank spare ada12

Il est déconseillé d'utiliser ZFS au dessus d'un RAID matériel. Autant que faire se peut, on configurera ses disques en JBOD ou idéalement pass-through. Il y a deux raisons à cela.

Tout d'abord ZFS est conçu pour utiliser le cache des disques. En empilant une autre couche de cache (celle du contrôleur RAID) on risque de dégrader fortement les performances.

Mais surtout, le RAID matériel étant vu comme un disque unique, on risque de priver ZFS de toute redondance au niveau des données et donc de le priver de tout moyen de se réparer en cas d'incohérence.

Un RAID matériel sera donc dans la plupart des cas au mieux nuisible et au pire dangereux. En production, un zpool a besoin de redondance. Sinon, il n'offre aucune sécurité.

Le seul point pour lequel un contrôleur RAID est intéressant est la présence d'une BBU (batterie de secours permettant d'éteindre les disques proprement en cas de crash) qui permet d'avoir une stratégie d'IO plus agressive. Nous y reviendrons.

Dans la plupart des cas, un contrôleur SATA ou SAS basique fera très bien l'affaire, voire, si on souhaite un grand nombre de disques, un HBA standard couplé à des boîtiers JBOD.

Toujours au niveau performance, penser à activer la commande TRIM lorsqu'elle est disponible — comme par exemple sous FreeBSD avec le pilote ada — car elle permet d'indiquer aux périphériques de type SSD quels blocs ne sont plus utilisés et ainsi d'optimiser leurs performances.

Enfin, sachez que si vos disques présentent quasiment tout le temps des secteurs de 512 octets, ils gèrent en réalité 4k ou 8k. Aligner le zpool sur cette taille permet d'éviter beaucoup d'opérations de copie en mémoire et donc d'accélérer considérablement les performances. Généralement, avec des disques récents, on ne se pose pas de questions et on part sur 4k.

Pour ce faire, il faut positionner correctement la propriété ashift au moment de la création du zpool. Il s'agit du logarithme en base 2 de la taille des secteurs. Ainsi 2ashift est la plus petite IO possible sur le périphérique.

Il faudra utiliser :

	le pseudo device gnop sous FreeBSD ;

	
sd.conf sous Illumos ;

	Et l'option -o ashift=12 à la commande zpool sous Linux.

Cette dernière méthode devrait se généraliser.

Pour retrouver l'ashift utilisé, on utilise la commande zdb :

zdb tank | grep ashift

Commandes pour survivre

Maintenant que nous avons un zpool avec de beaux disques, il faut le garder en vie.

Configuration

A l'image des cartes RAID, ZFS stocke sa configuration directement sur les disques sous formes de métadonnées y compris les points de montage.

Il est toutefois possible de la sauvegarder en copiant le fichier défini par la propriété cachefile. Ce fichier contient une image de la configuration trouvée sur les disques et détectée par ZFS à l'initialisation.

Cette configuration est portable. Ainsi un zpool créé depuis un liveCD peut très bien être réutilisé par la suite par un autre système. C'est ce qu'on fait généralement lorsqu'on veut utiliser ZFS pour sa partition racine.

On marque le pool comme libéré :

zpool export pool

On peut ensuite le réimporter :

zpool import pool

Si on a sauvegardé le cachefile :

zpool import pool -c /path/to/cachefile

Maintenance

Au niveau des diagnostics, la commandes de base est zpool status, qui affiche l'état des différents périphériques ainsi que l'état de cohérence du pool, et un résumé des dernières erreurs.

zpool iostat permet de monitorer l'activité en live :

zpool iostat nfs 1 10
 capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
nfs 6,24T 14,6T 145 91 2,39M 4,15M
nfs 6,24T 14,6T 108 43 13,6M 115K
nfs 6,24T 14,6T 334 0 41,8M 0
nfs 6,24T 14,6T 526 0 65,5M 0
nfs 6,24T 14,6T 510 233 63,8M 28,3M
nfs 6,24T 14,6T 511 718 63,9M 69,7M
nfs 6,24T 14,6T 579 0 72,5M 0
nfs 6,24T 14,6T 698 0 87,3M 0
nfs 6,24T 14,6T 443 0 55,3M 0
nfs 6,24T 14,6T 579 0 72,5M 0

zpool scrub permet de lancer une vérification exhaustive des données. Contrairement au fsck, le scrub peut être effectué à chaud.

On peut bien entendu remplacer un disque, le mettre offline ou online :

zpool replace tank sda sdb
zpool offline tank c1t3d0
zpool online tank c1t3d0
zpool replace tank c1t3d0

L'ensemble des propriétés du pool s'obtient avec zpool get all, zdb donne des informations de debug et de cohérence et enfin zpool history retrace les événements survenus.

zpool history
2013-12-11.10:36:15 zpool offline nfs c4t22d0
2013-12-11.12:17:25 zpool replace -f nfs c4t22d0 c4t22d0
2012-09-19.16:05:03 zpool create -f rpool c3t0d0s0
2012-09-19.16:09:57 zpool set bootfs=rpool/ROOT/openindiana rpool
2012-09-19.17:31:58 zpool upgrade rpool

Le cache

Si on cherche des performances, il est important de donner à notre zpool de quoi gérer du cache, autrement dit de la mémoire et des SSD.

Le premier niveau de cache réside en mémoire. Il utilise une variante de l'algorithme Adaptive Replacement Cache développé et breveté par IBM.

Par défaut, ZFS va utiliser jusqu'à 75% de la mémoire pour les systèmes ayant moins de 4 Gio et toute la mémoire moins 1 Gio pour les autres. Il est conseillé de limiter cet usage si on a besoin de mémoire par ailleurs (par exemple pour un SGBD). Il faut en particulier faire attention avec l'hyperviseur Xen à bien limiter le arc_max_size à 80% de la mémoire de l'hyperviseur et non à celle de la machine.

Cela se fait via sysctl sous FreeBSD, dans /etc/system sous Solaris, dans /etc/modprobe.d/zfs.conf sous Linux.

Lorsqu'on vise les performances, une bonne formule est 8 Gio + 1 à 2 Gio par Tio. Ceci dit on peut être bien plus modeste suivant le contexte. Pour de l'archivage de log ou des backups par exemple inutile de mettre autant de RAM. Dans tous les cas avec moins de 4 Gio de RAM votre machine ne sera pas taillée pour les performances. ZFS désactive un tas de choses dans ce cas et en particulier le prefetch.

Bien évidemment 1 Gio par Tio c'est bien jusqu'à une certaine limite et suivant les volumes à stocker, cela peut rapidement devenir irréaliste. Heureusement ZFS possède un second niveau de cache, le L2ARC, qui utilise du stockage rapide comme par exemple des SSD.

zpool add storage cache ada1

Pour connaître l'état de fonctionnement du cache ARC il faut regarder les variables du noyau avec l'outil approprié (kstat, sysctl, /proc fu), soit par le biais d'un script tel que arcstat.pl (Solaris) ou sysutils/zfs-stats (FreeBSD).

Il existe trois types de cache (tout, rien, uniquement les métadonnées). Mais cette configuration se fait plutôt suivant l'usage par volume.

Gestion des écritures synchrones

Les développeurs sont des gens bien gentils, mais s'ils pouvaient arrêter d'ouvrir leurs fichiers avec le flag O_FSYNC à tout bout de champ, cela arrangerait tout le monde. Ce flag indique en effet que les écritures ayant lieu sur ce descripteur de fichier ne doivent être acquittées que lorsque l'ensemble des données sont effectivement écrites sur le disque, ce qui est globalement lent.

Pour pallier ce problème, on peut ajouter au zpool un périphérique tampon chargé d'accélérer les écritures synchrones. Le ZFS Intent Log (ZIL) stockera de façon temporaire et sécurisée les données à écrire, permettant un acquittement précoce sans pour autant sacrifier la cohérence et la sécurité. Par exemple on peut utiliser deux disques SSD en miroir :

zpool tank add log mirror ada12 ada13

Il est également possible d'utiliser le ZIL pour toutes les écritures en désactivant le mécanisme d'écriture asynchrone (writeback). À moins d'avoir un périphérique magique, cela devrait être plus lent mais peut toutefois être une option si on ne veut pas perdre de transactions lors d'un arrêt brutal. On peut également faire plus rapide et moins sûr à condition d'avoir du matériel secouru par BBU (battery backup unit). Mais cela se configure alors volume par volume et non plus au niveau du zpool.

Les volumes

Une fois notre pool opérationnel, on peut l'utiliser pour créer des volumes. Il en existe deux sortes :

	les zvols, qu'on peut utiliser comme un périphérique de bloc quelconque ;

	les datasets, qui contiennent un système de fichier ZFS et qu'on peut monter où bon nous semble.

En fait ce sont les mêmes, à quelques propriétés près.

Pour un dataset :

zfs create -o mountpoint=/var tank/var

On peut ensuite créer des sous volumes :

for i in log spool tmp empty lib; do
 zfs create tank/var/$i
done

Enfin, on peut donner les propriétés qu'on souhaite :

zfs set exec=off tank/var/tmp
zfs set refquota=10G tank/var/log
zfs set sharenfs=on tank/isos

Pour un volume, il suffit de spécifier la propriété volumesize :

zfs create -V 8G tank/swap

Le volume est alors accessible dans /dev/zvol/tank/swap :

mkswap /dev/zvol/tank/swap
swapon /dev/zvol/tank/swap

On peut aussi faire du thin-provisionning :

zfs create -s -V 100G tank/vm-01-data
zfs set shareiscsi=on tank/vm-01-data

Comme on le voit, il est très simple de manipuler tout cela.

Propriétés

La commande zfs permet de manipuler les propriétés des zvols et des datasets telles que :

	la gestion des ACL POSIX :

aclinherit=discard | noallow | restricted | passthrough
aclmode=discard | groupmask | passthrough | restricted

	les options de montage traditionnelles :

canmount=on | off | noauto
mountpoint=path | none | legacy
exec=on | off
readonly=on | off
setuid=on | off
atime=on | off

	un certain nombre d'options concernant la façon de stocker les données :

checksum=on | off | fletcher2 | fletcher4 | sha256 | noparity
compression=on | off | lzjb | gzip | gzip-N | zle | lz4
dedup=on | off | verify | sha256[,verify]

Il est à noter que la déduplication a un effet certain sur les performances. Pour l'heure, l'utilisation des clones reste la meilleure façon de partager les mêmes données entre différents utilisateurs.

Le taux de compression est donné par la propriété compressratio du dataset ou du volume. Le taux de déduplication apparaîtra lui dans les propriétés du zpool.

Ici, l'outil zdb est également très utile. zdb -c vérifiera l'ensemble des sommes de contrôle, zdb -D donnera des informations détaillées sur la déduplication, la compression et notamment le ratio dedup x compress / copies qui correspond au taux effectif de place gagné. On y trouvera notamment :

	le type de cache :

primarycache=all | none | metadata
secondarycache=all | none | metadata

Le cache metadata est particulièrement utile pour les systèmes de backup qui comparent les métadonnées des fichiers sources et destination (rsync : building filelist). Désactiver complètement le cache ne présente pas à ma connaissance d’intérêt si ce n'est celui d'éviter dans certains cas précis les effets de double cache.

	les quotas utilisateurs :

userquota@user=size | none
groupquota@group=size | none

	la taille du volume.

Si pour un zvol la taille est fixée une fois pour toute à la création (volsize), celle d'un dataset peut être décidée de façon plus flexible. Par défaut, un dataset n'est limité que par la taille du zpool.

On peut toutefois très bien fixer sa taille maximale avec la propriété quota (qui inclut les descendants et les snapshots) ou refquota (qui n'inclut aucun descendant). On peut également lui réserver de l'espace (reservation et refreservation). Enfin — et ce peut être intéressant en particulier avec des SGBD — on pourra modifier la taille des enregistrements (recordsize).

	méthode de synchronisation :

sync=standard | always | disabled

standard correspond au mécanisme de writeback par défaut, always traite toutes les écritures comme synchrones (utilisation massive du ZIL s'il existe). disabled nécessite un matériel secours par des batteries (BBU) mais augmente considérablement les performances. À ce propos, il est à noter qu'il ne suffit pas qu'il y ait une BBU pour qu'elle fonctionne. Il s'agit d'un dispositif chimique globalement aussi fiable qu'une batterie de téléphone. sync=disable signifiant qu'en cas d'arrêt brutal votre système de fichiers sera tout simplement mort, la supervision des BBU et des tests de fonctionnement réguliers sont le moindre des préalables.

	et d'autres.

Les nostalgiques pourront créer des systèmes de fichiers insensibles à la casse (casesensitivity=insensitive), ou plus intéressant : s'assurer que tous les noms de fichiers sont écrits en UTF-8 (utf8only=on). La propriété copies placée à 2 ou 3 (1 par défaut) assurera qu'il existe plusieurs copies des données, indépendamment du raid sous-jacent. snapdir=visible permettra de naviguer dans les snapshots à partir d'un dossier .snap à la racine du dataset et jailed/zoned de savoir si le dataset a été délégué à un container de type jail ou zone. Enfin, la commande zfs permet aussi de paramétrer les partages réseaux :

sharesmb=on | off | opts
sharenfs=on | off | opts
shareiscsi=on | off | opts

Mais soyons francs, on ne choisit pas un FS parce qu'il nous évite l'édition de /etc/exports.

Les captures

Nous avons vu que dans un zpool on peut créer deux types de ressources : des volumes et des datasets. Il en existe une troisième, les snapshots. Un snapshot correspond à l'état figé d'un volume ou un dataset à un instant t. Leur prise est très rapide et aussi simple qu’utile :

	sauvegarde à chaud ;

	rollback après une mise à jour ;

	clonage ;

	rotation des backups ;

	…

zfs snapshot pool/volume@nom_du_snapshot

L'espace utilisé sur un zpool par les différents éléments est souvent un peu complexe à déterminer :

zfs list -o space
NAME AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD
tank 111G 322G 0 151G 0 171G
tank/apache 111G 32K 0 32K 0 0
tank/joris 111G 165G 0 165G 0 0
tank/local 111G 4,44G 0 4,44G 0 0
tank/poudriere 111G 1,60G 0 33K 0 1,60G
...

L'usage global est la somme de quatre valeurs :

	l'espace utilisé par les snapshots ;

	l'espace utilisé par le dataset ;

	l'espace réservé ;

	et enfin l'espace utilisé par les sous-volumes.

Pour comprendre le poids des snapshots, prenons un exemple. Créons un dataset et deux fichiers de 20Mio :

zfs create tank/linuxfr
dd if=/dev/zero of=/home/linuxfr/1 bs=1M count=20
20+0 records in
20+0 records out
20971520 bytes transferred in 0.028457 secs (736950437 bytes/sec)
dd if=/dev/zero of=/home/linuxfr/2 bs=1M count=20
20+0 records in
20+0 records out
20971520 bytes transferred in 0.028432 secs (737599308 bytes/sec)

Cela nous donne :

zfs list -o space tank/linuxfr
NAME AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD
tank/linuxfr 111G 40,0M 0 40,0M 0 0

Si maintenant on prend un snapshot :

zfs snapshot tank/linuxfr@1
zfs list -o space -t all | egrep 'linuxfr|USED'
NAME AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD
tank/linuxfr 111G 40,0M 0 40,0M 0 0
tank/linuxfr@1 - 0 - - - -

Le snapshot ne fait aucun poids dans la mesure où les données sont les mêmes dans le snapshot et dans le dataset.

Si on supprime mon fichier 1 :

zfs list -o space -t all | egrep 'linuxfr|USED'
NAME AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD
tank/linuxfr 111G 40,1M 20,0M 20,0M 0 0
tank/linuxfr@1 - 20,0M - - - -
-

20 Mio ont basculé du USEDDS vers USEDSNAP. La taille d'un snapshot est égale au différentiel de données entre le dataset et le snapshot. Plus le snapshot sera ancien, plus l'espace qu'il occupe sera significatif.

Maintenant, imaginons qu'on ait détruit le fichier 1. On peut le retrouver simplement :

zfs rollback tank/linuxfr@1

Mais dans ce cas, tout autre modification sera perdue. Il est possible de remonter le snapshot ailleurs en faisant un clone :

zfs clone tank/linuxfr@1 tank/linuxfr_rescue
zfs list -t all | grep linuxfr
tank/linuxfr 40,1M 111G 20,0M /home/linuxfr
tank/linuxfr@1 20,0M - 40,0M -
tank/linuxfr_rescue 1K 111G 40,0M /home/linuxfr_rescue

On peut maintenant récupérer notre fichier dans /home/linuxfr_rescue sans écraser /home/linuxfr. Si maintenant on décide de remplacer tank/linuxfr par son clone, il nous faudra promouvoir celui-ci.

Observons :

zfs destroy tank/linuxfr
cannot destroy 'tank/linuxfr': filesystem has children
use '-r' to destroy the following datasets:
tank/linuxfr@1

tank/linuxfr ne peut être détruit sans détruire tank/linuxfr@1 :

zfs destroy tank/linuxfr@1
cannot destroy 'tank/linuxfr@1': snapshot has dépendent clones
use '-R' to destroy the following datasets:
tank/linuxfr_rescue

tank/linuxfr@1 ne peut être détruit sans détruire tank/linuxfr_rescue :

Promouvons …

zfs promote tank/linuxfr_rescue
zfs list -t all | grep linuxfr
tank/linuxfr 20K 111G 20,0M /home/linuxfr
tank/linuxfr_rescue 40,0M 111G 40,0M /home/linuxfr_rescue
tank/linuxfr_rescue@1 1K - 40,0M

Le snapshot tank/linuxfr@1 est devenu tank/linuxfr_rescue@1. En général la suite logique est :

zfs destroy tank/linuxfr
zfs rename tank/linuxfr_rescue tank/linuxfr
zfs list -t all | grep linuxfr
tank/linuxfr 40,0M 111G 40,0M /home/linuxfr
tank/linuxfr@1 1K - 40,0M -

Un clone n'est pas un système de fichier indépendant. Il hérite de la même lignée de snapshot que le volume dont il est issu.

Savoir recevoir

Pour dupliquer réellement un volume, il faut utiliser send/receive

zfs snapshot tank/linuxfr@1
zfs send tank/linuxfr@1 | zfs receive tank/linuxfr2
zfs list -t all | grep linuxfr
tank/linuxfr 20,0M 111G 20,0M /home/linuxfr
tank/linuxfr@1 0 - 20,0M -
tank/linuxfr2 20,0M 111G 20,0M /home/linuxfr2
tank/linuxfr2@1 0 - 20,0M -

ici contrairement au clone, tank/linuxfr et tank/linuxfr2 sont deux dataset totalement indépendants .

On peut vouloir les garder synchronisés. Pour cela on peut faire des send incrémentaux.

dd if=/dev/zero of=/home/linuxfr/3 bs=1M count=20
zfs snapshot tank/linuxfr@2
zfs send -i tank/linuxfr@1 tank/linuxfr@2 | zfs receive tank/linuxfr2

On n'envoie que la différence entre les deux snapshots soit 20 Mio. Pour savoir si un dataset a besoin d'être resynchronisé, on peut regarder la propriété written

zfs get written tank/linuxfr
NAME PROPERTY VALUE SOURCE
tank/linuxfr written 0

dd if=/dev/zero of=/home/linuxfr/4 bs=1M count=20
20+0 records in
20+0 records out
20971520 bytes transferred in 0.028963 secs (724077463 bytes/sec)

zfs get written tank/linuxfr
NAME PROPERTY VALUE SOURCE
tank/linuxfr written 20,0M -

zfs snapshot tank/linuxfr@3

zfs send -v -i tank/linuxfr@2 tank/linuxfr@3 | zfs receive tank/linuxfr2
send from @2 to tank/linuxfr@3 estimated size is 20,0M
total estimated size is 20,0M
TIME SENT SNAPSHOT

Bien évidemment, vu qu'on passe par un pipe on peut faire des trucs sympas, comme synchroniser une machine distante :

zfs send -v -i tank/linuxfr@2 tank/linuxfr@3 | ssh machine2 zfs receive tank/linuxfr

Ou dans une version plus élaborée

zfs send -i tank/linuxfr@2 tank/linuxfr@3 | pv -L 1m --quiet | ssh -c blowfish -i .ssh/replication_dsa zfs receive tank/linuxfr

Et là, on tient le Graal :) ou presque… En effet, souvent lorsqu'on cherche à répliquer un volume sur une machine distante, c'est que la machine principale va mal. Pour l'heure l'opération peut être laborieuse, puisqu'en cas de plantage il faudra tout reprendre depuis le début. Heureusement la possibilité de reprendre un send / receive interrompu est dans les objectifs du projet OpenZFS.

Réplication et haute dispo

Utiliser Send / Receive pour assurer la disponibilité des données lors du crash d'une machine est une idée tentante ; c'est par exemple ce que fait hybridcluster.com avec une plate-forme certes propriétaire mais largement documentée. Il s'agit de mettre en place un démon monitorant l'état des datasets au travers par exemple de l'interface dtrace et de déclencher la réplication afin de maintenir un jeu de datasets passifs aussi proche que possible de l'original. Il faut toutefois bien comprendre que ce type de réplication est forcément asynchrone et que sur une plate-forme à forte densité d'écriture la perte de données en cas de bascule est inévitable.

Pour l'heure les logiciels gérant la synchronisation de volumes au sein d'un parc sont souvent des scripts shells manquant de robustesse ou d'intelligence. L'un des obstacles à l'écriture de logiciels plus avancés est l'obligation de passer par l’exécution de commandes shell. Il existe bien une libzfs et une libzpool, mais ce sont des bibliothèques privées sans interface fixe. La libzfs_core devrait résoudre se problème.

En pratique la consolidation des données au travers du réseau à base de Send / Receive fonctionne plutôt bien à condition d'en accepter les limites.

Si on cherche une vraie solution de haute disponibilité libre, il faudra se tourner vers les outils classiques tels que les couches de réplication temps réel en mode bloc des systèmes sous-jacents (DRBD pour Linux, HAST, pour FreeBSD) couplé par exemple à du VRRP ou encore un système de fichier distribué comme GlusterFS.

Si par contre on tolère du propriétaire, on pourra faire appel à RSF-1. C'est la solution généralement retenue par les marchands d'appliances.

Tout cela pour dire que finalement ZFS n'est pas un système de fichier distribué et n'a pas la prétention de l'être. Ceci dit, vu ses capacités de redondance et sa flexibilité, on peut parier que la question devrait en exciter plus d'un.

Conclusion

Pour conclure, un peu de poésie dans ce monde de brutes :

wget http://archive.zfsonlinux.org/debian/pool/main/z/zfsonlinux/zfsonlinux_2%7Ewheezy_all.deb
dpkg -i zfsonlinux_2~wheezy_all.deb
apt-get update
apt-get install debian-zfs

Et hop ! zfs dans ta Debian :-)

Aller plus loin

	
OpenZFS
(360 clics)

	
ZFS sur wikipedia
(516 clics)

	
ZFS sur le wiki de FreeBSD
(66 clics)

	
ZFS on Linux
(144 clics)

	
Illumos
(70 clics)

	
Le ZFS Evil Tuning Guide
(131 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

