

eXtreme Programming Explained: Embrace Change

Posté par Anonyme le 27 mai 2001 à 22:58.

Modéré par Fabien Penso.

Étiquettes :

	livre

[image: Doc]

Extrait:

"Kent Beck, auteur de plusieurs ouvrages autour de SmallTalk et des «design patterns», nous présente dans cet ouvrage une méthode de développement s'addressant à des équipes petites à moyennes qui doivent développer du logiciel aux spécifications vagues et/ou changeantes."

Note du modérateur : l'on entend de plus en plus souvent parler d'eXtreme Programming ; aussi, si vous avez des expériences bonnes ou mauvaises avec cette méthode ce serait sympa de les faire partager aux lecteurs du site via les commentaires de cette critique. Pas de troll SVP. Argumentez de manière objective vos opinions
	

	

eXtreme Programming Explained: Embrace Change

		Auteur

		Kent Beck

		Editeur

		 Addison-Wesley

		ISBN

		0-201-61641-6

		Pages

		190

		Prix

		 244FF

		Rédacteur

		 Laurent Guerby

[image: Couverture]

<!-- Ceci est a mettre comme texte de la news annoncant la revue

	du livre -->

Kent Beck, auteur de plusieurs ouvrages autour de SmallTalk et des

«design patterns», nous présente dans cet ouvrage une méthode de

développement s'addressant à des équipes petites à moyennes qui

doivent développer du logiciel au spécifications vagues et/ou

changeantes.

 <!-- Fin du texte de la news -->

Le choix d'un intitulé provoquant : «eXtreme Programming»

(«Programmation Extrême» abrégé en «XP» dans l'ouvrage et cette revue)

ne doit pas cacher l'ingéniosité et le sérieux des techniques

présentées, on retrouve beaucoup de bon sens et d'attention à la

réalité de ce type de projets souvent absent des processus de

développement employés en pratique (quand il y en a un ...).

Pourquoi «eXtreme» alors ? Simplement parce que l'idée de la méthode

est de pousser les bonnes idées connues («Best Practices»), comme par

exemple les revues de code, à un niveau d'emploi extrême, comme

toujours écrire le code à deux programmeurs («Pair Programming»),

de-facto obligeant tout code écrit à être vérifié par au moins une

personne autre que l'auteur au moment de sa création.

Trois ouvrages ont été publiés à ce jour dans la collection «The XP

Series» : celui couvert par cette revue, «eXtreme Programming

Installed» par Ron Jeffries & al., et «Planning eXtreme Programming»

par Kent Beck et Martin Fowler. Tous ont en commun d'être relativement

courts (entre 150p et 250p), de suivre un style succint et direct et

d'être agréables à lire.

Le premier ouvrage («Explained») couvre la méthode dans son ensemble

et est celui à lire pour se faire une idée de la méthode avant d'aller

plus loin avec les ouvrages suivants.

Le deuxième («Installed») détaille les étapes survolées par le premier

ouvrage, les problèmes que les programmeurs XP vont sûrement

rencontrer ainsi que des conseils pour les résoudre basés sur

l'expérience des auteurs. C'est le plus épais des trois.

Le troisième («Planning») insiste sur les activités de plannification,

estimation des coûts, des priorités, et gestion des ressources

humaines. Quelques situations inextricables sont aussi passées en

revue.

«eXtreme Programming Explained: Embrace Change» est consitué de

nombreux chapitres, chacun étant bref, introduisant un ou des élèments

typiques d'un projet et comment ils s'intègrent dans la méthode XP.

Un grand nombre d'aspect d'un projet typique sont abordés : discussion

avec le client, management, changement des spécifications, conception,

codage, tests, livraisons, environnement physique de travail, conflits

humains et autres sont abordés par l'ouvrage.

Les grandes lignes de la méthode XP sont dévoilées et illustrées peu à

peu au cours de l'ouvrage. On peut en extraire les principales :

	Cycles de livraison les plus courts possibles, typiquement de une à

quatre semaine, avec une cible bien définie sous forme de petits

scénarios chacun décrivant une caractéristique utile du logiciel,

écrits en commun par le client et les développeurs.

	Le client suit et oriente le projet en supprimant, redéfinissant ou

ajoutant des caractéristiques et les développeurs estiment le coût des

demandes de manière réactive et font les choix techniques.

	Les participants aux projets sont conscients des relations entre les

quatres variables du développement logiciel : coût, délais, qualité et

étendue. Le client choisi trois variables, et l'équipe de

développement détermine la quatrième.

	Les caratéristiques les plus prioritaires sont codées d'abord et le

plus simplement possible sans chercher à généraliser immédiatement.

	En gardant un cycle court on peut arriver à garder un coût des

changement dans le logiciel qui n'est pas exponentiel avec le temps.

	Quand la conception d'une partie du code montre ses limites, les

développeurs identifient le problème et affinent la conception au cours

d'une itération («Continuous Refactoring»).

	Les tests unitaires sont écrits avant le code, et tous les tests

écrits, anciens et nouveaux, sont lancés le plus fréquement possible.

	Les temps de développement des caractéristiques sont suivis

précisément ce qui permet d'avoir des estimations de plus en plus

fiables pour les nouvelles caractéristiques au fur et à mesure de

l'avancement projet.

	Le code est toujours écrit par deux personnes travaillant en paire.

Le code est écrit par petit incrément et intégré au logiciel en

quelques jours au plus. Tout le monde peut modifier du code partout

dans le logiciel, sans domaine réservés et ce tant que les tests

unitaires passent.

Rien de vraiment révolutionnaire, mais le tout mis ensemble définit

une méthode qui parait robuste et bien adaptée à sa cible. D'autres

points de la méthode et des conseils pour sa mise en oeuvre sont aussi

décrits.

La présentation du livre est sobre et efficace, le style direct et au

final c'est un ouvrage relativement court mais très dense en

information. Un glossaire et une bibliographie annotée intéressante

pour compléter votre bibliothèque terminent le livre.

En conclusion, si vous vous interessez aux méthodes de développement,

ne manquez pas cet ouvrage, même si vous n'adoptez pas l'intégralité

des techniques décrites, vous pourrez sûrement bénéficier de certaines

d'entre elles avec un minimum d'effort sur vos projets actuels et

futurs.

 Table des matières

	Foreword by Erich Gamma

	Chapter 1 Risk: The Basic Problem

	Chapter 2 A Development Episode

	Chapter 3 Economics of Software Development

	Chapter 4 Four Variables

	Chapter 5 Cost of Change

	Chapter 6 Learning to Drive

	Chapter 7 Four Values

	Chapter 8 Basic Principles

	Chapter 9 Back to Basics

	Chapter 10 Quick Overview

	Chapter 11 How Could This Work?

	Chapter 12 Management Strategy

	Chapter 13 Facilities Strategy

	Chapter 14 Splitting Business and Technical Responsability

	Chapter 15 Planning Strategy

	Chapter 16 Development Strategy

	Chapter 17 Design Strategy

	Chapter 18 Testing Strategy

	Chapter 19 Adapting XP

	Chapter 20 Retrofiting XP

	Chapter 21 Lifecycle of an Ideal XP Project

	Chapter 22 Role for People

	Chapter 23 20-80 Rule

	Chapter 24 What Makes XP Hard

	Chapter 25 When You Shouldn't Try XP

	Chapter 26 XP at Work

	Chapter 27 Conclusion

	Annotated Bibliography

	Glossary

	Index

 Références

	Le site d'XP

	Le site du livre chez l'éditeur

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections12.png

