

G’MIC 3.2.5 : 15 ans de développement pour du traitement d’images libre et reproductible

Posté par David Tschumperlé (site web personnel) le 30 mai 2023 à 21:22.
Édité par orfenor, Yves Bourguignon, Ysabeau 🧶, Arkem et Julien Jorge.
Modéré par Ysabeau 🧶.
Licence CC By‑SA.

Étiquettes :

	g'mic

	traitement_d'images

	greyc

[image: Graphisme/photo]

À l’occasion de la sortie de la version 3.2.5 de G’MIC (GREYC’s Magic for Image Computing), cadriciel libre pour le traitement des images, nous vous proposons un récapitulatif des nouvelles fonctionnalités implémentées depuis notre précédente dépêche (publiée en décembre 2021). C’est aussi pour nous l’opportunité de célébrer les 15 ans d’existence du projet !

G’MIC est développé à Caen, en France, dans l’équipe IMAGE du GREYC, un laboratoire public de recherche en Sciences et Technologies de l’Information et de la Communication (Unité Mixte de Recherche CNRS / ENSICAEN / Université de Caen). Il est distribué sous licence libre CeCILL.

[image: gmic_teaser]

Dans cette dépêche, nous détaillerons quelques-unes des fonctionnalités récemment ajoutées, et nous les illustrerons par des exemples de traitement et de synthèse d’images 2D et 3D.

N. D. A. : Cliquez sur les images pour en obtenir une version en pleine résolution, ou une vidéo correspondante lorsque les images contiennent l’icône [image: play_video]

Sommaire

	1. Qu’est-ce que G’MIC ?

	2. Nouveaux filtres pour l’abstraction, le Glitch Art et la génération de motifs

	
3. Nouveautés concernant le traitement des couleurs
	3.1. Fonctionnalités pour les LUTs 3D

	3.2. Nouveaux filtres couleurs pour le greffon G'MIC-QT.

	3.3. Commandes color2name et name2color

	
4. Maillages 3D et ensembles de voxels
	4.1. Import d'objet en format Wavefront

	4.2. Outils de transformation des maillages 3D.

	4.3. Outils de génération de maillages 3D

	
5. Autres nouveautés
	5.1. Amélioration diverses du greffon G’MIC-Qt

	5.2. Amélioration de la bibliothèque standard stdgmic

	5.3. Informations diverses liées au projet

	6. Conclusions & perspectives

1. Qu’est-ce que G’MIC ?

G’MIC est un cadriciel (framework) libre pour la manipulation et le traitement des images numériques. Il propose des interfaces utilisateur variées pour la manipulation algorithmique d’images et de signaux. Le cœur de ce projet repose sur l’implémentation d’un langage de script (le « langage G’MIC »), élaboré spécifiquement pour faciliter le prototypage et l’implémentation de nouveaux algorithmes et opérateurs de traitement d’images. Les utilisateurs peuvent appliquer des opérateurs parmi plusieurs centaines déjà implémentées, mais ont également la possibilité d’écrire leurs propres pipelines de traitement et de les rendre accessibles dans les différentes interfaces utilisateur du projet. C’est donc, par essence, un cadriciel ouvert, extensible et en évolution constante.

Les interfaces utilisateurs de G’MIC les plus abouties sont : gmic, l’interface en ligne de commande (complément utile à ImageMagick ou GraphicsMagick pour ceux qui aiment utiliser le terminal), le service Web G’MIC Online, et surtout, le greffon G’MIC-Qt, utilisable dans de nombreux logiciels populaires d’édition d’images numériques tels que GIMP, Krita, DigiKam, Paint.net, Adobe Photoshop, Affinity Photo… Ce greffon, très facile à utiliser, propose aujourd’hui plus de 580 filtres de traitement pour enrichir ces logiciels de manipulation d’images.

[image: Greffon G’MIC-Qt] Fig. 1.1. Aperçu du greffon G’MIC-Qt, en version 3.2.5, ici lancé depuis GIMP 2.10.

Grâce à son langage de script dédié, de nouveaux filtres et effets pour le traitement d’images sont régulièrement ajoutés à G’MIC.

Dans cette dépêche, nous détaillerons quelques-uns de ces nouveaux traitements et donneront quelques nouvelles du projet. Nous donnerons également des exemples d’utilisation de l’outil en ligne de commande gmic, qui est de loin l’interface la plus puissante offerte par le projet.

2. Nouveaux filtres pour l’abstraction, le Glitch Art et la génération de motifs

	Pour commencer cette revue des nouveautés, mentionnons l’existence d’un nouveau filtre de transformation d’images sous la forme de dessins au trait (« Line Art » en anglais). Ce filtre, opportunément nommé Artistic / Line Art a été élaboré par Claude Lion, contributeur extérieur déjà auteur de plusieurs filtres (dont le très apprécié Artistic / Comic Book dont nous avions déjà parlé dans notre dépêche précédente).

Ce filtre analyse la géométrie des structures principales dans les images et décide si ces structures doivent apparaître dans une image redessinée sur fond blanc, soit sous forme de traits noirs, soit sous forme d’aplats gris ou noirs. Il fonctionne particulièrement bien avec des portraits, puisque les contrastes sont assez marqués dans ce type d’images.

[image: filter_lineart] Fig. 2.1. Le filtre Artistic / Line Art, tel qu’il apparaît dans le greffon G’MIC-Qt.

La visualisation interactive du greffon G’MIC-Qt facilite le réglage de l’ensemble des paramètres du filtre, pour personnaliser le type de rendu souhaité. L’appui sur les boutons « Apply » ou « OK » applique le filtre sur l’image. Notons qu’une fois ces paramètres choisis, l’appui sur le bouton « Copy to Clipboard » de l’interface du greffon va copier la commande G’MIC correspondante dans le presse-papier.

[image: filter_lineart_zoom] Fig. 2.2. Le bouton « Copy to Clipboard » copie dans le presse-papier la commande G’MIC correspondant à l’action du filtre.

Pour appliquer ensuite le filtre avec les mêmes paramètres sur d’autres images (par exemple pour du traitement par lot), il suffit de lancer gmic dans son terminal, en y ajoutant le nom du fichier image à traiter et la commande copiée préalablement dans le presse-papier, ce qui donnera par exemple :

$ gmic autre_portrait.jpg cl_lineart 0,0,2,1,15,15,1,0,6,2,2,0,0,0,50,50 output lineart.png

Cette astuce est utile quand on souhaite utiliser certains effets G’MIC simplement dans des scripts personnalisés (cela fonctionne évidemment avec tous les filtres disponibles dans le greffon).

[image: lineart] Fig. 2.3. Le filtre « Line Art », appliqué sur une autre image de portrait, avec les mêmes paramètres, depuis le terminal.

[image: lineart] Fig. 2.4. Le filtre « Line Art », appliqué sur d’autres images d’exemples.

	Passons maintenant au filtre Degradations / Huffman Glitches, un moyen amusant de générer du Glitch Art. Plus précisément, on va simuler ici des artéfacts de décompression d’images via l’ajout volontaire d’erreurs (inversions de bits) dans les codes d’Huffman qui auraient été utilisés pour la compression sans perte des données de l’image d’entrée. Cela produit des distorsions numériques visibles sur l’image lors de la décompression des données bruitées, distorsions qui sont justement des effets recherchés par les amateurs de Glitch Art !

[image: huffman_glitches] Fig. 2.5. Le filtre Degradations / Huffman Glitches, tel qu’il apparaît dans le greffon G’MIC-Qt.

Ce filtre permet la génération d’artéfacts de compression avec des variations : bloc par bloc, ligne par ligne, colonne par colonne, ou sur des données image encodées dans des espaces couleur différents de RGB. Au final, la variété des anomalies qu’il est possible de produire est assez importante, comme illustré par la figure suivante :

[image: huffman_glitches2] Fig. 2.6. Quelques variations des paramètres du filtre Degradations / Huffman Glitches.

Là encore, il est facile de récupérer la commande G’MIC correspondant à l’application du filtre, pour l’utiliser dans un script, par exemple pour l’application de cet effet sur toutes les frames d’une vidéo (cliquez sur l’image ci-dessous pour visualiser la vidéo) :

[image: v_huffman_glitches] Fig. 2.7. Le filtre Degradations / Huffman Glitches appliqué sur la vidéo Tears of Steel de la fondation Blender.

Il flotte comme un doux parfum de télé analogique… ☺

	Mentionnons également l’apparition d’un nouveau filtre, nommé Patterns / Pack Ellipses, qui risque de ne pas plaire à nos lecteurs trypophobes (aucun lien avec la peur de manger des tripes à la mode de Caen) ! Ce filtre a pour tâche de redessiner une image en emboîtant des ellipses colorées, sans les faire se toucher. Les ellipses sont orientées parallèlement ou orthogonalement aux structures locales, pour faire ressortir au mieux les contours les plus saillants des images. Ce n’est pas le premier filtre de ce type dans G’MIC, mais on a ici un nouvel algorithme d’empilement compact, relativement rapide à exécuter, et qui produit des images intéressantes.

[image: pack_ellipses] Fig. 2.8. Le filtre Patterns / Pack Ellipses, tel qu’il apparaît dans le greffon G’MIC-Qt.

[image: pack_ellipses2] Fig. 2.9. Application du filtre Patterns / Pack Ellipses sur différentes images de portrait.

La vidéo ci-dessous illustre le comportement pas à pas de l’algorithme pour l’emboîtement de cercles colorés, afin de reconstituer l’image d’un portrait :

[image: v_circle_packing] Fig. 2.10. Les différentes étapes du filtre Patterns / Pack Ellipses décomposées en vidéo.

	Toujours dans les effets de génération de textures et de motifs, signalons l’apparition d’un nouveau filtre de Halftoning, nommé Patterns / Halftone [Generic]. Là encore, l’idée est de reconstituer une image d’entrée en empilant des motifs colorés de géométrie quelconque, par exemple de petits cercles :

[image: halftone_generic] Fig. 2.11. Le filtre Patterns / Halftone [Generic], tel qu’il apparaît dans le greffon G’MIC-Qt.

Ou encore, une spirale :

[image: halftone_generic2] Fig. 2.12. Filtre Patterns / Halftone [Generic] avec un motif en spirale.

Le filtre propose même un mode spécial pour que l’utilisateur puisse fournir son motif de Halftoning personnalisé, dans un calque séparé :

[image: halftone_generic3] Fig. 2.13. Filtre Patterns / Halftone [Generic] avec un motif personnalisé.

D’un point de vue algorithmique, l’idée est d’éroder ou dilater localement le motif donné en paramètre du filtre, pour encoder au mieux le niveau de gris de chacun des pixels de l’image d’entrée.

	Le filtre suivant a une histoire amusante : étant abonné au compte Twitter de l’artiste Memo Akten, je suis tombé un jour sur ce tweet qui décrit un algorithme d’art génératif que Memo a imaginé (mais pas implémenté). Ce fut une bonne occasion d’essayer de l’implémenter en langage G’MIC, juste pour le plaisir d’expérimenter ! Une fois cela réalisé, créer un filtre utilisable dans le greffon G’MIC-Qt allait de soi. Il en résulte le filtre Rendering / Algorithm A, qui crée des illustrations abstraites dans un esprit très « Mondrianesque ».

[image: algorithmA] Fig. 2.14. Le filtre Patterns / Algorithm A, tel qu’il apparaît dans le greffon G’MIC-Qt.

La génération des images repose largement sur le tirage de nombres aléatoires. D’une simple ligne de commande, on peut donc facilement produire plusieurs œuvres différentes à la suite :

$ gmic repeat 6 { 500,500,1,3 fx_memoakten_algorithm_a[-1] '$>',20,30,30,2,50,10,50,40,3,60,1,0,0,0,255,255,255,255,0,0,255,128,0,255,255,0,0,0,0 } frame 1,1,0 frame 5,5,255 append_tiles 3 output output.png

ce qui synthétise l’image suivante :

[image: algorithmA2] Fig. 2.15. Patchwork d’« œuvres d’art », produites par le filtre Patterns / Algorithm A.

	Toujours afin de produire des images bizarres et abstraites, évoquons l’apparition du filtre Arrays & Tiles / Shuffle Patches, qui va décomposer une image d’entrée sous la forme d’un tableau d’imagettes (« patchs »), et mélanger spatialement ces patchs avant de les recoller pour produire l’image résultat. Différentes options sont proposées, permettant la rotation aléatoire des patchs, ou le recollage de patchs qui se superposent.

[image: shuffle_patches] Fig. 2.16. Le filtre Arrays & Tiles / Shuffle Patches, tel qu’il apparaît dans le greffon G’MIC-Qt.

On obtient ainsi une image qui ressemble à un collage de différentes parties de l’image d’origine, avec des couleurs globalement similaires, mais où l’on perd l’ordre naturel des structures.

[image: shuffle_patches2] Fig. 2.17. Effet du filtre Arrays & Tiles / Shuffle Patches sur une image de paysage.

Ici encore, nous pouvons appliquer ce filtre sur toutes les frames d’une vidéo, illustré avec l’exemple ci-dessous (vous aurez bien sûr reconnu le court-métrage Big Buck Bunny de la fondation Blender).

[image: shuffle_patches2] Fig. 2.18. Le filtre Arrays & Tiles / Shuffle Patches appliqué sur la vidéo Big Buck Bunny de la fondation Blender.

	Et pour clôre cette section sur les effets d’abstraction d’images, de Glitch Art et de génération de motifs, voici le filtre Patterns / Pills, qui crée une texture périodique ressemblant à un empilement de « pilules » tournées de 90° les unes par rapport aux autres.

[image: pills] Fig. 2.19. Le filtre Patterns / Pills, tel qu’il apparaît dans le greffon G’MIC-Qt.

Rien de très compliqué : ce filtre est une implémentation directe de la formule mathématique

[image: pills_formula]

Cette jolie formule a été imaginée par Miloslav Číž, et décrite sur cette page. Il était tentant d’en faire un nouveau filtre accessible à tout le monde !

Notons que nous pouvons produire cette même image de base, directement à partir de la formule initiale, en lançant encore une fois gmic en ligne de commande :

$ gmic 600,600,1,1,"X = x*30/w; Y = y*30/h; sqrt(abs(sin(X + cos(Y + sin(X + cos(Y)))) * sin(Y + cos(X + sin(Y + cos(X))))))" normalize 0,255

Le filtre Patterns / Pills dans le greffon G’MIC-Qt autorise néanmoins quelques variations additionnelles, comme la possibilité de spécifier un angle de rotation ou de créer ces motifs indépendamment pour chacun des canaux RGB de l’image de sortie.

3. Nouveautés concernant le traitement des couleurs

3.1. Fonctionnalités pour les LUTs 3D

G’MIC est un logiciel de traitement d’images qui intègre nativement beaucoup de LUTs 3D couleur différentes (1045 à ce jour), en particulier grâce à un algorithme performant de compression de LUTs issu de nos travaux de recherche (décrit dans une dépêche précédente). Ces LUTs 3D couleur définissent des fonctions de transformation des couleurs d’une image, souvent pour lui donner une ambiance particulière. Récemment, de nouvelles commandes pour faciliter la visualisation et la création de LUTs 3D couleur ont été ajoutées à G’MIC :

	La commande display_clut fait le rendu 3D d’une LUT couleur, ce qui permet de visualiser la transformation RGB → RGB qu’elle représente. Par exemple, la commande :

$ gmic clut summer clut spy29 display_clut 400 text_outline[0] Summer text_outline[1] "Spy 29"

affichera :

[image: display_clut] Fig. 3.1.1. La commande display_clut affiche une vue 3D d’une _LUT couleur._

	La commande random_clut, quant à elle, produit une LUT 3D couleur aléatoire, possédant certaines propriétés de continuité des couleurs. Par exemple, la commande suivante :

$ gmic sample colorful resize2dx 320 repeat 4 { random_clut +map_clut[0] [-1] display_clut[-2] 320 to_rgb[-2] append[-2,-1] y } frame 2,2,0 to_rgba append x,1

synthétisera une image du style de celle ci-dessous :

[image: random_clut] Fig. 3.1.2. Différentes _LUTs 3D couleur aléatoires, obtenues via la commande random_clut, et appliquées sur une image couleur._

3.2. Nouveaux filtres couleurs pour le greffon G'MIC-QT.

	Assez logiquement, la commande random_clut est à la base de l’implémentation du nouveau filtre Colors / Random Color Transformation, apparu dans le greffon G’MIC-Qt, qui applique une transformation colorimétrique aléatoire sur une image d’entrée.

[image: random_color_transformation] Fig. 3.2.1. Le filtre Colors / Random Color Transformation, tel qu’il apparaît dans le greffon G’MIC-Qt.

	Pour rester dans le domaine des LUTs 3D couleur, mentionnons l’apparition du filtre Colors / Apply From CLUT Set, qui permet de transformer une image couleur en lui appliquant l’une des LUTs 3D définies dans un pack de LUTs, stocké lui-même sous la forme d’un fichier d’extension .gmz.

Quelques explications sont nécessaires : le format de fichier .gmz est implémenté et utilisé par G’MIC pour la sérialisation et la sauvegarde de données binaires génériques compressées.

Ainsi, comment produire un fichier .gmz stockant un ensemble de LUTs 3D couleur compressées, pour alimenter le filtre Colors / Random Color Transformation ? Prenons l’exemple concret du pack de 10 LUTs proposé gracieusement sur cette page web. Ces LUTs sont distribuées en format .cube, le format le plus répandu pour le stockage des LUTs 3D couleur. Ces 10 fichiers occupent 8.7 Mo sur le disque.

[image: clut_set2] Fig. 3.2.2. Visualisation des 10 LUTs 3D couleur de notre cas d’exemple.

La commande suivante les compresse (avec des pertes visuellement imperceptibles) grâce à l’algorithme de compression de LUTs de G’MIC, en un fichier clut_pack.gmz de 156 Ko. Attention, ce processus de compression est long (plusieurs dizaines de minutes) !

$ gmic *.cube compress_clut , output clut_pack.gmz

Une fois ce fichier de pack de LUTs généré, ces 10 transformations couleur sont disponibles, via le filtre Colors / Apply From CLUT Set, en lui spécifiant le fichier clut_pack.gmz en paramètre, comme illustré ci-dessous.

[image: clut_set] Fig. 3.2.3. Le filtre Colors / Apply From CLUT Set, tel qu’il apparaît dans le greffon G’MIC-Qt.

Voilà donc un filtre évitant de stocker des packs de LUTs 3D couleur de plusieurs méga-octets sur son disque !

	Toujours dans le thème des transformations colorimétriques, voici le filtre récent Colors / Vibrance, qui rend les couleurs de vos images toujours plus chatoyantes. Ce n’est pas le premier filtre de ce type disponible dans G’MIC, mais on dispose ainsi d’une alternative aux algorithmes similaires déjà présents. Ce filtre émane de l’utilisateur Age, qui participe occasionnellement aux discussions sur notre forum, hébergé par nos amis de PIXLS.US (dont Pat David, également contributeur au projet GIMP, est l’instigateur).

[image: vibrance] Fig. 3.2.4. Le filtre Colors / Vibrance, tel qu’il apparaît dans le greffon G’MIC-Qt.

3.3. Commandes color2name et name2color

Dernière nouveauté concernant les couleurs : les deux commandes color2name et name2color, qui convertissent un code couleur RGB en un nom de couleur (en anglais), et inversement. Un exemple d’utilisation est :

$ gmic 27,1,1,3 rand 0,255 split x foreach { color2name {^} resize 300,100 text_outline '${}',0.5~,0.5~,28 } frame 1,1,0 append_tiles 3

Cette commande construit un tableau de couleurs aléatoires nommées, sous la forme d’une image telle que :

[image: color2name] Fig. 3.3.1. Exemple d’utilisation de la commande color2name pour nommer des couleurs aléatoires.

Les associations entre les 881 noms de couleurs reconnues par ces commandes et leurs codes RGB respectifs ont été récupérées de cette page Wikipédia. Ci-dessous, l’ensemble de ces 881 couleurs visualisées dans le cube RGB :

[image: color2name3d] Fig. 3.3.2. Ensemble des couleurs nommées connues par la commande color2name.

4. Maillages 3D et ensembles de voxels

Saviez vous que G’MIC était aussi capable de manipuler des objets 3D maillés (« 3D Mesh » en anglais), en plus de gérer des images conventionnelles ? Et même si la modélisation et la visualisation 3D ne sont pas centrales dans les objectifs du projet, plusieurs ajouts intéressants ont été implémentés dans ce domaine.

4.1. Import d'objet en format Wavefront

Tout d’abord, G’MIC peut désormais importer des objets 3D en format .obj Wavefront, alors que seul l’export dans ce format était possible auparavant (export qui a d’ailleurs été amélioré). Toutes les caractéristiques du format .obj ne sont cependant pas prises en compte, mais l’import de la géométrie de l’objet, de ses couleurs et de ses textures fonctionnent en général. Ainsi, la commande :

$ gmic luigi3d.obj display3d

permet d’importer un objet 3D et de le visualiser dans une nouvelle fenêtre, comme l’illustre l’animation ci-dessous. Attention, le visualiseur intégré à G’MIC n’utilise pas les possibilités des GPUs pour l’accélération graphique. Le rendu peut donc être assez lent si le maillage comporte beaucoup de primitives (une piste d’amélioration pour le futur ?).

[image: luigi3d] Fig. 4.1.1. Import et visualisation d’un maillage 3D texturé dans G’MIC.

Naturellement, nous avons intégré cette nouvelle fonctionnalité d’import de maillages 3D dans le greffon G’MIC-Qt, avec le nouveau filtre Rendering / 3D Mesh, qui permet d’importer un fichier .obj et d’en insérer un rendu 3D dans une image, comme l’illustre la vidéo ci-dessous :

[image: mesh3d] Fig. 4.1.2 Le filtre Rendering / 3D Mesh en action, dans le greffon G’MIC-Qt.

On l’utilisera typiquement pour importer un objet 3D du type que l’on souhaite dessiner, pour l’orienter dans l’espace, et s’en servir comme « guide » de dessin, soit en le redessinant complètement sur un calque supérieur, soit en utilisant un des nombreux filtres de G’MIC, par exemple pour en faire un rendu cartoon ou peinture.

4.2. Outils de transformation des maillages 3D.

Que faire d’autre, une fois un maillage 3D chargé en mémoire ? G’MIC s’est doté des fonctionnalités suivantes :

	L’extraction des textures de l’objet 3D, grâce à la nouvelle commande extract_textures3d. Les trois figures suivantes illustrent un cas d’utilisation, avec l’exemple d’un objet 3D maillé de chat dont la texture est extraite, transformée avec un filtre de stylisation (basé sur le modèle de l’estampe japonaise La Grande Vague de Kanagawa), puis réappliquée sur le chat.

[image: cat_obj] Fig. 4.2.1. Vue d’un objet 3D maillé representant un chat, avec sa texture.

[image: cat_textures] Fig. 4.2.2. Extraction et stylisation des textures, via la commande extract_textures3d.

[image: v_extract_texture3d] Fig. 4.2.3. Visualisation du maillage 3D original et de sa version stylisée.

	On peut également subdiviser les faces d’un objet 3D, grâce à la nouvelle commande subdivide3d.

[image: subdivide3d] Fig. 4.2.4. Subdivision des faces d’un maillage 3D de tore, par la commande subdivide3d.

	On peut convertir un objet 3D texturé en objet uniquement coloré, avec la commande primitives3d. La commande suivante applique ce processus sur l’objet Luigi3d introduit précédemment, pour lui retirer sa texture et la remplacer par des faces colorées :

$ gmic luigi3d.obj primitives3d 2 output luigi3d_no_textures.obj

[image: primitives3d] Fig. 4.2.5. Conversion des primitives texturées en primitives colorées uniquement, avec la commande primitives3d.

La couleur de chaque face est calculée comme la moyenne des couleurs à chacun des sommets composant la face. Pour les grandes faces, cela peut donc être très utile de subdiviser l’objet préalablement pour obtenir une résolution de texture colorée suffisante dans l’objet final (avec la commande subdivide3d).

	Enfin, on peut également convertir l’objet maillé 3D sous forme d’une image volumique contenant un ensemble de voxels, grâce à la nouvelle commande voxelize3d. Cette commande convertit toutes les primitives de base composant un objet 3D (points, faces, segments, sphères), sous la forme de primitives discrètes tracées dans l’image volumique. Par exemple, la commande :

$ gmic skull.obj voxelize3d 256,1,1 output skull_voxelized.tif display_voxels3d

va transformer le maillage du crane illustré ci-dessous, sous la forme d’une image volumique de voxels en couleurs, que l’on va pouvoir visualiser avec la nouvelle commande display_voxels3d. D’où un rendu très « Minecraftien » (representé ci-dessous pour différentes résolutions de voxélisation) :

[image: voxelize3d] Fig. 4.2.6. Conversion d’un maillage 3D texturé sous forme d’images volumiques composé de voxels colorés, avec la commande voxelize3d.

Cette fonctionnalité servira, par exemple, aux personnes étudiant le domaine de la géométrie discrète, qui pourront facilement générer des objets discrets 3D complexes à partir de maillages (souvent plus faciles à produire que leurs équivalents discrets !). La vidéo ci-dessous illustre le rendu d’un objet 3D discret obtenu de cette façon :

[image: v_display_voxels3d] Fig. 4.2.7. Vidéo de visualisation d’un maillage 3D complexe voxélisé par la commande voxelize3d.

4.3. Outils de génération de maillages 3D

Pour conclure cette partie dédiée aux maillages 3D dans G’MIC, mentionnons l’apparition de quelques commandes récentes, en vrac, pour la génération procédurale d’objets 3D maillés :

	Les commandes shape_menger et shape_mosely produisent des représentation volumiques (images de voxels) des objets mathématiques fractals suivants : L’éponge de Menger et le flocon de Mosely.

[image: menger_sponge] Fig. 4.3.1. Rendus 3D de l’éponge de Menger et du flocon de Mosely, crées avec les commandes shape_menger et shape_mosely.

[image: v_menger_sponge] Fig. 4.3.2. Vidéo d’une éponge de Menger, rendue par G’MIC.

	La commande chainring3d produit un anneau 3D de tores colorés :

[image: chainring3d] Fig. 4.3.3. Rendu d’un anneau 3D de tores colorés, avec la commande chainring3d.

	La commande curve3d génère le maillage 3D d’une courbe paramétrée t → (x(t),y(t),z(t)) avec optionnellement une épaisseur de rayon r(t), elle aussi paramétrée.

[image: curve3d] Fig. 4.3.4. Rendu d’une courbe 3D paramétrée, créé par la commande curve3d.

	La commande sphere3d peut maintenant produire des maillages 3D de sphères par trois méthodes différentes : 1. la subdivision d’isocahèdres, 2. la subdivision de cubes, et 3. la discrétisation angulaire en coordonnées sphériques. Les voici illustrées de gauche à droite, ci-dessous :

[image: sphere3d] Fig. 4.3.5. Production de maillages 3D de sphères, avec trois algorithmes de maillage différents, via la commande sphere3d.

En pratique, toutes ces nouvelles commandes de création de maillages 3D peuvent s’insérer dans des pipelines G’MIC plus complexes, afin de construire des objets 3D sophistiqués de manière procédurale. Ces maillages pourront ensuite être exportés en fichier .obj. En voici l’illustration, avec la création d’un anneau de chaines récursif qui a été d’abord généré par G’MIC (utilisant d’ailleurs la commande chainring3d comme élément de base), puis importé dans Blender :

[image: antoine3d] Fig. 4.3.6. Génération procédurale d’objet faite en G’MIC, puis importé dans Blender.

5. Autres nouveautés

Cette dernière section livre quelques autres informations liées au projet, sans ordre précis.

5.1. Amélioration diverses du greffon G’MIC-Qt

Beaucoup de travail a été accompli sur le code du greffon G’MIC-Qt, même si cela n’est pas forcément visible au premier abord. Citons en particulier :

	Des optimisations importantes du code qui améliorent le temps de démarrage du greffon : la fenêtre du greffon s’affiche plus rapidement, l’analyseur des filtres est plus efficace, notamment grâce à l’utilisation d’un cache binaire stockant les informations des filtres analysés après une mise à jour.

	Des améliorations concernant la stabilité du greffon. Il gère mieux les threads lancés par des filtres non terminés.

	Un changement du thème de l’interface, qui passe par défaut en mode sombre (« Dark Mode »).

	Le temps d’exécution d’un filtre apparaît maintenant lorsque l’on clique sur le bouton « Apply ».

	Un nouveau système de gestion des sources externes de filtres : il devient facile pour un développeur de partager ses filtres G’MIC personnalisés avec un utilisateur, en lui fournissant un fichier ou une URL pointant vers leur implémentation (à la manière des PPA pour les gestionnaires de paquets sous Ubuntu).

[image: filter_sources] Fig. 5.1.1. Le nouveau système de gestion des sources de filtres externes dans le greffon _G’MIC-Qt._

	Le greffon offre un moyen aux filtres de conserver des données persistantes dans un cache en mémoire, lors d’appels consécutifs. Cela permet aux filtres ayant besoin de charger ou générer des données volumineuses, de ne le faire qu’une fois, et de les réutiliser lors des appels suivants. Ce système est par exemple utilisé par le filtre Rendering / 3D Mesh pour stocker l’objet 3D lu à partir d’un fichier.

	Le code du greffon a été modifié pour faciliter un future portage vers la version 6 de la bibliothèque Qt.

	Grâce au travail de Nicholas Hayes, le greffon G’MIC-Qt est maintenant disponible sur le Marketplace d’Adobe. L’installation du greffon est donc maintenant facilitée pour les utilisateurs de Photoshop.

	Mentionnons enfin la mise à jour du greffon pour la dernière version de Digikam (la 8.0.0), grâce au travail de Gilles Caulier. Une documentation fournie a été mise en ligne sur le site de Digikam.

[image: digikam] Fig. 5.1.2. Le greffon G’MIC-Qt est disponible directement depuis Digikam, logiciel libre de gestion de photographies.

5.2. Amélioration de la bibliothèque standard stdgmic

La bibliothèque standard de G’MIC (stdgmic) contient l’ensemble des commandes non natives, écrites directement en langage G’MIC, et distribuées par défaut avec le cadriciel. En pratique, la grand majorité des commandes existantes rentrent dans ce cadre. En plus des nouvelles commandes déjà décrites plus haut, notons les ajouts et améliorations suivantes dans la stdgmic :

	La bibliothèque nn_lib, permettant l’apprentissage de réseaux de neurones simples, se dote de nouveaux modules (Softmax Layer, Cross-Entropy Loss, Binary Cross-Entropy Loss, Conv3D, Maxpool3D et PatchUp/PatchDown 2D/3D). Son développement avance doucement. Elle est déjà utilisée par le filtre Repair / Denoise, déjà mentionné dans notre précédente dépêche. Nous avons aussi implémenté quelques exemples « jouets » d’apprentissage statistique utilisant cette bibliothèque, comme par exemple l’apprentissage d’une fonction (x,y) → (R,G,B) représentant une image. L’idée ici est d’apprendre à un réseau de neurones à reproduire une image couleur, en lui fournissant comme données d’apprentissage les coordonnées (x,y) des points de l’image (en entrée) et leurs couleurs (R,G,B) correspondantes (en sortie). La figure ci-dessous montre l’image globale reconstruite par le réseau au fur et à mesure des itérations d’apprentissage :

[image: nnlib] Fig. 5.2.1. Apprentissage par réseaux de neurones d’une fonction (x,y) → (R,G,B) représentant une image. Les différentes itérations du processus d’apprentissage sont affichées.

La séquence d’apprentissage complète est visible dans la vidéo ci-dessous :

[image: v_nnlib] Fig. 5.2.2. Séquence des itérations d’apprentissage du réseau de neurones, pour l’apprentissage d’une fonction (x,y) → (R,G,B) représentant une image.

Nous avons également des exemples fonctionnels de la nn_lib pour classifier automatiquement des images simples (provenant entre autres des jeux de données MNIST et Fashion MNIST). G’MIC peut donc potentiellement détecter le contenu de certaines images, comme illustré ci dessous avec la classification de chiffres manuscrits (nous avons en stock une méthode similaire pour la détection de visages humains).

[image: mnist] Fig. 5.2.3. Classification automatique d’images de chiffres manuscrits (base de données _MNIST) par réseau de neurones, via l’utilisation de la bibliothèque nn_lib de G’MIC_.

Un début de documentation sur l’utilisation de cette bibliothèque d’apprentissage statistique en langage G’MIC est disponible sur notre forum de discussion.

	Autre fonctionnalité de la stdgmic : la commande match_icp implémente l’algorithme appelé « Iterative Closest Point » (ICP), qui met en correspondance deux ensembles de vecteurs à N dimensions. Cette commande peut servir à déterminer la transformation géométrique rigide (rotation + translation) entre deux frames d’une animation, et cela, même en présence de bruit. L’animation ci-dessous illustre ce processus, avec deux transformations rigides estimées par ICP, pour recaler respectivement les silhouettes d’étoile et de coeur.

[image: lineaa] Fig. 5.2.4. Recalage de silhouettes par algorithme d’« Iterative Closest Point », via la commande match_icp.

	Signalons aussi les nouvelles commandes img2patches et patches2img :
elles permettent respectivement la décomposition d’une image en un empilement volumique d’imagettes (« patchs ») et sa récomposition, éventuellement en prenant en compte des patchs qui se superposent. Par exemple, la commande :

$ gmic butterfly.jpg img2patches 64

va transformer l’image d’entrée (à gauche ci-dessous) en un empilement volumique de patchs (image de droite) :

[image: img2patches0] Fig. 5.2.5. Transformation d’une image couleur en un empilement volumique de _patchs, par la commande img2patches._

On peut ensuite traiter cet ensemble de patchs, par exemple en les triant dans l’ordre croissant de leur variance (donc du niveau de détails qu’ils contiennent), avant de recomposer l’image. Comme avec la commande suivante :

$ gmic sample butterfly W,H:=w,h img2patches 64,0,3 split z sort_list +,iv append z patches2img '$W,$H'

Ceci produit l’image ci-dessous, où les patchs sont de plus en plus détaillés au fur et à mesure que l’on descend dans l’image.

[image: img2patches] Fig. 5.2.6. Tri des patchs d’une image par ordre de détail croissant.

	La nouvelle commande line_aa, implémente l’algorithme de Xiaolin Wu pour le tracé de segments anti-aliasées, c’est-à-dire qu’elle essaye de minimiser l’effet de crénelage qui apparaît classiquement lors du tracé de primitives dans des images discrètes.

[image: lineaa] Fig. 5.2.7. Comparaison des rendus de tracés de segments, entre l’algorithme classique de Brensenham et l’algorithme de Xiaolin Wu implémenté par la commande line_aa.

	Pour achever cette section sur la bibliothèque standard de G’MIC, mentionnons l’arrivée des commandes ssim (calcul de la mesure « Structural Similarity » entre deux images), opening, opening_circ, closing, closing_circ (ouverture et fermeture morphologiques avec élément structurant carré ou circulaire), betti (calcul des nombres de Betti, invariants topologiques de formes discrétisées en 2D ou 3D) et d’un nouveau mode de fusion de calque shapeprevalent pour la commande blend. Comme vous le voyez, il y a toujours de nouvelles choses à explorer ☺ !

5.3. Informations diverses liées au projet

Pour terminer cette longue dépêche, voici en vrac, quelques informations générales sur le projet G’MIC.

	D’abord, un rappel de l’existence de greffons OpenFX embarquant les fonctionnalités de G’MIC, permettant donc d’appliquer la plupart de nos filtres dans les logiciels d’édition vidéo qui implémentent cette API (tels que Natron ou Adobe After Effects). Pour en savoir plus, voir le post dédié de l’auteur de ces greffons, Tobias Fleischer.

[image: openfx] Fig. 5.3.1. Un des greffons OpenFX de G’MIC en action, dans le logiciel Adobe After Effects.

[image: openfx2] Fig. 5.3.2. Un des greffons OpenFX de G’MIC en action, dans le logiciel Natron.

	Notre algorithme d’éclairage automatique de dessins colorisés en aplats, mentionné lors d’une dépêche précédente (filtre Illuminate 2D Shape) a fait l’objet d’une publication en fin d’année 2022, à la conférence IEEE International Conference on Image Processing à Bordeaux. Cette publication, intitulée « Automatic Illumination of Flat-Colored Drawings by 3D Augmentation of 2D Silhouettes » détaille l’ensemble de l’algorithme implémenté dans ce filtre. Ce filtre est apprécié des illustrateurs, qui peuvent l’utiliser pour donner rapidement du relief à leurs dessins colorisés en aplats, comme le montre la vidéo suivante :

[image: illuminate_shape] Fig. 5.3.3. Tutoriel vidéo d’utilisation du filtre Illuminate 2D Shape pour l’éclairage automatique d’un dessin colorisé en aplats.

Les plus curieux de détails techniques sur l’algorithme pourront visualiser la présentation suivante, donnée à la conférence ICIP’2022 :

[image: illuminate_shape2] Fig. 5.3.4. Vidéo d’explication de l’algorithme à la base du filtre Illuminate 2D Shape.

	Notons que le langage de script de G’MIC est suffisamment flexible pour être utilisé, non seulement pour définir des filtres de traitement d’images, mais aussi pour élaborer des démonstrateurs interactifs. Au laboratoire GREYC, il nous a permis de développer deux bornes de démonstration autour du traitement d’images. Ces démonstrateurs sont exposés sur notre stand lors d’évènements grand-public (par exemple la Fête de la Science, ou le Festival de l’Excellence Normande).

Le premier de ces démonstrateurs est visible en cliquant sur l’image ci-dessous (présentation donnée par notre collègue Loïc Simon). Il illustre la problématique du « transfert de style » entre deux images. Il s’exécute sur une table tactile.

[image: demo_table_tactile] Fig. 5.3.5. Aperçu du démonstrateur G’MIC de transfert de style (cliquez sur l’image pour accéder à la démo à 360°).

Le deuxième démonstrateur permet de jouer avec un miroir déformant interactif, comme montré dans la vidéo ci-dessous :

[image: greyc_warp] Fig. 5.3.6. Démonstrateur interactif de déformation d’images, implémenté en langage G’MIC.

	À titre de projet personnel, j’ai commencé l’écriture d’un raytracer simple en langage G’MIC, pour tester les capacités du langage. Le but n’est pas forcément d’aller très loin (par manque de temps, car c’est très intéressant en pratique !), mais c’est un bon moyen de détecter les optimisations intéressantes qui pourraient être faites dans l’interpréteur G’MIC ultérieurement. Une animation d’un objet simple, générée par ce raytracer en cours de développemnt, est visible ci-dessous :

[image: raytracer] Fig. 5.3.7. Exemple de rendu obtenu par la technique du raytracing, implémentée en G’MIC (en cours de développement).

	Pour ceux qui veulent en savoir plus sur le fonctionnement du langage G’MIC, nous recommandons la lecture des formidables pages de tutoriel écrites par Garry Osgood, contributeur depuis plusieurs années à la documentation du projet G’MIC. En particulier, il a récemment écrit une série d’articles sur la création d’arabesques, que l’on ne peut que conseiller !

[image: arabesque] Fig. 5.3.8. Exemple de tracé de silhouette par la technique d’arabesque décrite dans le tutoriel de Garry Osgood.

	Notons qu’avec le langage G’MIC, il est aussi possible de créer des one-liners amusants, c’est-à-dire des commandes qui tiennent sur une ligne et qui génèrent des images ou des animations insolites. Les deux commandes G’MIC suivantes en sont de bons exemples :

One-liner N°1 : Génération d’une image couleur fixe.

$ gmic 500,500 repeat 10 { +noise_poissondisk[0] '{3+$>}' } rm[0] a z f '!z?(R=cut(norm(x-w/2,y-h/2)/20,0,d-1);i(x,y,R)):0' slices 0 to_rgb f 'max(I)?u([255,255,255]):I' blur_radial 0.6% equalize n 0,255

[image: lightspeed] Fig.5.3.9. Résultat du one-liner N°1.

One-liner N°2 : Création d’une animation couleur, de type « peau de dinosaure ».

$ gmic 300,300x5 foreach { noise_poissondisk 40 +distance 1 label_fg.. 0 mul. -1 watershed.. . rm. g xy,1 a c norm neq 0 distance 1 apply_gamma 1.5 n 0,255 } morph 20,0.1 map copper +rv[^0] animate 40

[image: reptile_skin] Fig.5.3.10. Résultat du one-liner N°2.

	Les deux images ci-dessous sont le résultat d’expérimentations en langage G’MIC de Reptorian, contributeur de longue date, qui explore beaucoup les possibilités du langage pour l’art génératif.

[image: generative_art2] Fig.5.3.11. Variante de la technique de « Diffusion-limited aggregation », guidée par la géométrie d’une image (par Reptorian).

[image: generative_art3] Fig.5.3.12. Génération de motif fractal (par Reptorian).

D’autres exemples sont visibles sur son fil de discussion (en anglais).

	Concernant la dimension « communication » du projet, il existe depuis plusieurs années un compte Twitter où nous postons régulièrement des informations sur l’évolution du projet, l’arrivée de nouvelles fonctionnalités, la sortie de nouvelles versions, etc. Dorénavant, nous avons également un compte Mastodon, où nous postons les actualités autour du projet. N’hésitez pas à vous y abonner !

[image: mastodon] Fig. 5.3.13. Aperçu du compte Mastodon de G’MIC.

	Sur les réseaux sociaux, il arrive qu’on tombe sur des posts inattendus où des personnes montrent leur utilisation de G’MIC. Par exemple, cette série de posts récents met en jeu du traitement d’images astronomiques avec des filtres de G’MIC, pour débruiter ou esthétiser des images :

[image: astro] Fig. 5.3.14. Utilisation de G’MIC pour le traitement d’images astronomiques.

Ces posts sont visibles ici, là, là, ou encore là. Ces retours d’utilisateurs sont évidemment valorisants pour nous. Si vous êtes vous même utilisateurs (contents ☺) de G’MIC, n’hésitez surtout pas à partager vos réalisations ou vos retours d’expérience. Ca fait toujours plaisir !

	Enfin, mentionnons le fait que G’MIC a fait l’objet d’articles dans les numéros 301 et 302 du magazine anglais LinuxFormat (numéros de mai et juin 2023), rédigés par Karsten Gunther. Ils présentent les différentes possibilités de retouche photo apportées par le greffon G’MIC-Qt, d’une manière très pédagogique (comme nous essayons d’ailleurs de le faire avec nos dépêches sur Linuxfr !).

[image: linux_format] Fig. 5.3.15. Le magazine « Linux Format » propose une série d’articles sur l’utilisation de G’MIC-Qt, dans ses numéros de mai et juin 2023.

Voilà, ce qui conclut notre tour d’horizon des derniers développements et informations portant sur le projet G’MIC.

6. Conclusions & perspectives

Après 15 ans de développement de G’MIC et 24 ans de développement de CImg, la bibliothèque C++ qui lui sert de fondation, nous disposons aujourd’hui d’un cadriciel libre et ouvert pour le traitement des images numériques, qui est mature et qui a prouvé son utilité pour résoudre des problèmes variés de traitement d’images.

Le nombre de téléchargements n’a cessé de croître, depuis l’écriture des premières lignes de code (en 2008), ce qui montre que le projet est dynamique et attire un large éventail d’utilisateurs.

Ce dynamisme est il durable ? Nous avons bien sûr toujours des idées pour l’amélioration de ce cadriciel. Mais en même temps, avec les responsabilités professionnelles qui augmentent, le temps à consacrer à son développement diminue. La stratégie pour la suite sera donc de :

	Bien sélectionner les pistes d’amélioration sur lesquelles travailler.

	Tenter de trouver du temps de développement extérieur (soit bénévole, soit financé).

Sur le court-terme, nous sommes à la recherche de contributeurs pour :

	Avancer sur le développement du binding G’MIC pour Python. Il faudrait le mettre à jour et consacrer suffisamment de temps à le tester en profondeur, pour rendre G’MIC utilisable sans bugs, directement depuis un programme écrit en Python. Le binding existant est fonctionnel et constitue déjà une bonne base de travail.

	Réussir à packager G’MIC pour macOS. Nous recevons en effet de nombreuses requêtes d’utilisateurs de Mac qui ne savent pas compiler et installer le greffon G’MIC-Qt pour GIMP. Nul doute qu’il soit possible d’améliorer cette situation, moyennant de l’aide extérieure.

Si vous pensez pouvoir contribuer sur l’un de ces deux points, n’hésitez surtout pas à nous contacter !

Enfin, la révolution induite par l’utilisation des réseaux de neurones dans le domaine du traitement des images numériques est primordiale. Sur ce point, G’MIC a du retard à rattraper. Nous nous sommes plutôt focalisés jusqu’à présent sur l’algorithmique « classique » du traitement d’images. Il faudrait pouvoir développer plus rapidement notre bibliothèque nn_lib pour parvenir à déployer des modèles neuronaux plus larges (quelques dizaines/centaines de millions de paramètres, ça serait déjà satisfaisant !), afin d’autoriser le traitement ou la synthèse d’images en utilisant des techniques plus avancées d’apprentissage statistique.

Comme vous le voyez, ce ne sont pas les idées qui manquent !

Pour finir, il faut rappeler que le développement de G’MIC n’aurait pas été possible sans les encouragements et le support du GREYC, notre laboratoire, et de ses tutelles : l’Institut INS2I du CNRS, l’Université de Caen Normandie, et l’ENSICAEN. Un grand merci à eux pour leurs aides à différents niveaux lors de ces quinze dernières années de développement. Depuis quelque temps, on voit se mettre en place, dans le domaine de la recherche scientifique, des initiatives intéressantes de valorisation de la science ouverte et reproductible (plan national pour la science ouverte, plan de la science ouverte du CNRS…), et du logiciel libre (programme de valorisation Open de CNRS Innovation). Ce sont des signaux encourageants pour les chercheurs qui investissent souvent beaucoup de temps dans la création de communs numériques libres (logiciels, jeux de données, etc.), et qui ont parfois du mal à valoriser ces réalisations comme des contributions scientifiques d’importance.

Nous espérons que cette dépêche vous a plu. Rendez-vous dans quelques mois semestres, avec, on l’espère, encore de nombreuses nouveautés à partager avec vous !

Aller plus loin

	
Le projet G’MIC
(121 clics)

	
Fil Mastodon des nouvelles du projet
(23 clics)

	
Série d’articles G’MIC sur LinuxFr.org
(30 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/2e62f75bb238c3d3e58d133c12357fa34a3c7c1b595c4e90fa962c85.png

EPUB/00590ee2e8d27fc4cbcb3931a2b595c7fff04cf262a22514cd892f2e.png
3 GREYC D.. =

BIENVENUE A GROUPE DE RECHERCHE é‘
INFORMATIQUE, IMAGE ET INSTRUMENTATION DE CAEN
NEUNITE MIXTE DE RECHERCHE DU CNRS

EPUB/a316d8344a4cddd5aaf7eb911d19fbb03787bf2397296defab43268e.png
Textured Faces e Colored Faces 6
»

EPUB/c9a51f1cfe11e4bd5536bb0aa99fd4f7f4b2c458105fc3dbbda9f3e1.png

EPUB/126c908715ae3ea094e20413950788f950213b8f79c8a6b69151c082.png
774

%
7

Zs

s
V7

e
X

5

A
i

EPUB/0afe583540b831699c197b7ae143ff140980209c9c4a0f956bffc967.png

EPUB/2e73209150cb372f19b23113e12a6dfb873d4768431910b9fe660f8a.png
| iL\H]j
i‘illil T

Automatic lllumination of Flat-Colored Drawings
By 3D Augmentation of 2D Silhouettes

D. Tschumperlé, C. P A. Mahboubi

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, F-14050 Caen, France

C

T;:"; GRE

QD

EPUB/3489020b90e7093ea56e49b07d50e79d30c39dce0fb4671abd891ce1.png
sl

SGMIC .

Magic for Image Computing

omc B

@gmic@piaile.fr

GMIC (GREYC' Magic for Image Computing) s ull featured open-source ramevork
forimage processing, distrbuted under the CeCILL icense.

s
2an fboto felouching £orashics friovramming

ensource #reesoftware

20nov 2022

HOME PAGE
v gmiceu

DowNLoAD
 gmic eudownload huml

GALLERY
 gmic.eugalley/

iresr nforen/profects/grmic

EPUB/0d468c3ed3c619a17cd1910df5e7cff953654a01419565c3c928c1f3.png

EPUB/d1b32bd91a92070470b1c8a66b13e3028da156e2c81e4a8b5c3eb4fe.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/9abb69fc8183086fc68c5715357d86f9c0f0966c718d896007122b22.png
Culor Dimmer Huesio Huyan Lavark

EPUB/d546cab9e4dce7563a4bbf884059da2e951bc754e7cebcc9a837dd5a.png

EPUB/933d13b3406417ac1e0faf4d9cd3830e6a856d8fa686f426c47b086b.png

EPUB/da3a733ec086e1514997aeeacc7142b68f6b9015e87498827cfcc0cb.png

EPUB/2559b4573863706e154edd26098e4a4a94a4821c2b4e1e9a3fad9c6c.png
B 5c AN, - E——-
#/000PRTOAT+0 WAZ

I:a:.:—m!'
. =

U — 0 =% @ 0O

EPUB/fd31bbd003a168a52d1fb1d99ad9b305aa05182b6f60cc2e6a592e3b.png
V/|sin(z + cos(y + sin(z + cos(y)))) sin(y + cos(z + sin(y + cos(z))))]

EPUB/f32f12b4a77f7ce358eb70fad713f3b7aefd84aeb98c866a22da4e04.png
Iteration{100, Iteration|200,

Iteration 1000

-

Iteiation/400 W iceration700

EPUB/37c8ae9647da89219db7d38e899a7e3405e261f2b014df8aaacd0278.png

EPUB/24836483069710f74bfdc583c454a466e81fc7add0d28e2741dad4ea.png
Patch-sorted

EPUB/fad88fe168b6fd3026ade1029d11af3c7ba61c8f93cfecec38d54360.png

EPUB/4051c965db3ef76afc354e1fb3a04327f3e79e497511fbbbcadb2cb5.gif

EPUB/4fb33dce8e2742d704b92408fdbfb04d00e4838677b34a9e1d7d3034.png
L CICE For GIMP 210" LR SIS 323 prewzsossd

seuen o packtpses
Ao s+
— it o) -
ot cenek] oo) —
atonesapes [—— =
s o —
Hedas (Exparinercl -
i o atropy (4]

e otropy Quntzstion
prre—
e arass sze -
e Bscrondcoior
| e E—
Packsries prseve mage sze

e rre———

EPUB/e2c07e9911ccf3cfe739d901aedd0a3851de640fc9aee5da56c4b9c8.png

EPUB/d2b63d2113ac61c4d710a61374e9bd7b9edc0840900dda325a7829b3.png
&l G'MIC-Qt for GIMP 2.10 - Linux 64 bits - 3.1.6_pres220715.

[“ shume patches
Ftes dapaibles 552 H
o rogln]
o
op—
cuceotiecs
crafcaresan
i ecogons)
G rngae]
ke seamiss o#Tsn]
ke seamiss Pt ases

oy
St rches
Toaun

Tiesi otaton
v ——
Tied Pasmeteztion

gt envtesare B
Tied Rtaton Colaves en et R AR @ aper noxEGE

e gy Moo SRR W OB

© v et . "

e Ot #pinecon Bavplver | Sk

EPUB/ce7ec964d61b5f79eaa96b82e9b45e00d9aefa7c43d4ba813f690a87.png
o CMICQE for GIMP 2.10 - Linux 64 bits - 3.2.5_prew230522 it

Search * Apply From cLUT set o
Available filers (589) =
+ About CLUT set (gmz File) Belut_packgmz
» ArraysaTiles Index . 8
» artistic
e strength () -
Brightness (%) E
contrast (%) El
Gamma (%) 2
Hue () El
Saturation (%) L]
Normaize Colors -
PreviewType.
Ao Dowd Tchumper._ Latest Udace: 20220508
" @
e input / Qutput P
ColorBlndness = input layers Active (default) &
= ¥ output mode [inplace (defalt) s

Ssetings..

EPUB/54ffe2d9709f7200561b2c40ad708925e20af3bfa777a051f432f09b.png

EPUB/011a2bc5a73e0c56b04c913caae25d22c8e7453ac495cc6199e972fb.png

EPUB/54bef0c9274b98cc64ab49f0d6425d419ea90a0db39b3652264aef78.png

EPUB/28961832205b83bee8863e8e1f3c0a0135b4b57ba99a31cd5da3b319.png

EPUB/4d0c42116e9f85d250d7c9d16b2bbf3edf700a42e2b48cd0eb08747a.png

EPUB/92868c29ebda4bd4fe8bedaff86a174d43546c7f41a208d302628c3e.png

EPUB/09f09b185c3834347abf608d7d9f1dd499fddacbbff2b88227028eda.png

EPUB/e509fb371338bb8f6deeeefe093b73a7a6ba07feb91c4d9cf64f49e9.png
L CMICQE For CIMP 210 Lini S Bits 3 24,

Huttman ctces e
Avatble ks (621
Mot Lol () — 5
sovode HOBUINGE
s oepthorried] o
s fcussin]
Burfion]
s lnes] “
B tdeecions]
] = =

Putsort
Ran soow oot ouput —
medamshade ey e et

v .

e

EPUB/a8e897b349f7e97717d5559f2c1c4b976c0f11ce7f631f75af2d2491.png
[———

——

EPUB/f4d5834ecfeec0560a4002862914b9c2ba5d18fc22f20ce5fc39ad6d.gif

EPUB/096f9b738502da2e2b79bcaaf7de732ade3d7bae279d1d91ab05fb18.png
[—

EPUB/c156469b23ae8765104ed310db7ae796148553957c519b1204e84860.png
L CMICQE For GIMP 210" Lini 4 Bits 325 prewzsoszs

= RERre——
vatale ks (559 : .. PR -5 CE03
e Lenowten =

s et

e e ——

Mook s) —8— @S

e cmrmtt9) —— @

e oty —e— .

e

=t a0 —a— 1

e P

e

=l Freien e Duplieversal
R G TGRS 7, e oot
Retex

ssunton o

stecnepince colr

pr——

Soulte i

softope

specticsatrstion gt output

TEQHBEBSNGE o ayers EREER -
uptmode Inplace doak)

setting ==

EPUB/d3be94d89681ff95c419879927dd47ad0512a4e275f9cca481fb4219.gif

EPUB/c9982b56fa6192cb3ca00504bfa425cb60c3b7fda023cc1805acb9fe.png

EPUB/be9130d31e481c4d50859621585a8e908b9920f59d8bdf15fdff9ce7.png
- W 7
o =1 "\‘/}‘/}2>)

o
. T & o o B
Cp. o wam S

g Sskntn S Ok

EPUB/db9d40ba087358280be1bdfe8711e4e9a185301c5b77e06f494184f2.png

EPUB/7c70aa73b2a35117810765f715524ef46798cb48d5878e2cf5e5849f.png

EPUB/76f14b526580ec81358cc4375d53f161b2a7320ce5377e1e55e4708e.png

EPUB/2ce043169e738269e281ef5282cecad3d5dfd1c0ce7d3db9c6885e89.png
fradin

e

EPUB/95cc7249eaf487d8563c1acf15f3b686b5922fa53a4f8245258ee536.png

EPUB/2537424c5ad4abf5169e298cd0e6d1639805c0541f1207f4c111a6a0.png
UMIC-QUTOr GIMF Z.TU-LINUX 04 DITS -

EPUB/77613d3ed391122e01edb6a1d86c44acbb537859a50419183409834b.png
Settings e
Interface | Filtersources Other

File /URL https://supersite.fr/super_filtres.gmic Addnew

${HOME}/.gmic 1T
/home/tschumperle/work/src/private_tschumperle/gmic_resources.gmic
https://supersite.fr/super filtres.gmic

“ Q

Environment variables (e.q. SHOME or $(HOME} for your home directory) are substituted in sources.
VERSION is also a predefined variable that stands for the G'MIC version number (currently 325).

Official filters: |Enable with updates (recommended) ~

EPUB/46201fa37bd4215cd0a0fa8c06d08d68245111bb2564a891c68739a0.png
Original texture

EPUB/a46d847506f165637cbae07b568a90ada2a0eeafc0cf6f98c274ad32.png
r——
e
+ v Ties

CWICQEFor GMP 2107 i 646K "3 25"

[r——

2
Voo conr ——a———— 0
r— »
ocecsomty a0
owecssze a1

P—

i R

EPUB/af5887c2c5c94ab56c8f6c0b39acad65745a6898ed80a6fd58cc9815.png

EPUB/1c42fb4ac303fe0bc4bf77426931d6ac2c58ec35631d93301b68a469.png

EPUB/b4f3f1f5eccac4544eed67165b3a025f94f0e6f2fec3a9e11616a333.png
Linesrt

EPUB/54955eb4e574a55d772ad17bcfd56b57eec81702ef82341cd6dd9dba.png
3D Mesh Voxelized (resglutiol

EPUB/8a18e018c386eb6753160134d2fad82d9dde1f5037664d18a6e4a777.png

EPUB/5de4855d442b7cac1c2bb1b3e720170ac74f754d866d7bbacb4b55cd.png
Gl G'MIC-Qt for GIMP 2.10 - Linux 64 bits - 3.2.5 pre#230518

packelpses
packspites

EPUB/6d0f8b8c7836753dfa37b961b6c78656e4cac1093a7900037cc06eb9.png

EPUB/046d4e9b56d8ffe9fb2a7c3ab37f518156862ab1256aa2551aac4e4e.png
°
@
°
=
T
)
S
(%)

EPUB/adf7671a364765c97eda78f5675590e12fb273b95dfa2632f407c07b.png

EPUB/imagessections16.png

EPUB/11569650b676eade035404a33e3e3f0337b8160777ae3629eecd539a.png

EPUB/5621bbb0923000bf30a59f21c5c5391af1714648f452d6256a81ef73.png

EPUB/614b2f8fbd7c75564360125f1b3db6970cb5aff469c40647beb8071f.png

EPUB/5a8959b4b6b1f9fa525eee0e17eb3cef8d0c08b7b2f81fe5df16e3cd.png
Pred: 8 Truth: 8[Pred: 0 Truth: O[Pred: 9 Truth: 9[Pred: 6 ;;h

Pred: 4 Truth: 4|Pred: 5 Truth: 5|Pred: 5 Truth: 5|Pred: 9 Truth:

£
ol Q
SR
0

Pred: 8 Truth: 8|Pred: 0 Truth: O|Pred: 2[Pred: 9 Truth:

ot
\
-5

Pred: 1 Truth: 1|Pred: 7 Truth: 7|Pred: 3__Truth: 3|Pred: 9 Truth:

\
W
-

EPUB/8f4fc380efbe4162d5e39314fe93d83801211dee40e7fd4386749a82.png

EPUB/339d5a9145f0bca8fd97c98d2c2634385a082c8cb5cb49d81e410dd1.png
jTufts[Bite) WediimAquamarine] Oxblood

Russian|Green JAnGio dlGieen (CadetiBlue

Plump Purple Shadowliue Suglow

Independence. [SpringlGreen Azurel

Orange|Red! Purpureus| (Blush]

SpanishViridian [Robin|Egg|Blue: Golden|Brown

Rt Gzzrz UenlGieen T Gy

Japanese Violet Hunter Green U Crimson Red

WeezylBle] Trypan Blue: Siate|Gray)

EPUB/6f913bc9752fa0e0d2ddc7211c825350eb747ecae3c307234080abd9.png

EPUB/f41983b55d8623cd9f80e51ab05d0535d08a4e841a851bee8313fa64.png

EPUB/f21956016d648140ab374c33198dc9caeb5474ba6ef0fe7fcd02e63d.png

EPUB/c7b80568458c7174f6a0b25cc6bc7620de92dee87484b89da35bc16e.gif

EPUB/b75f67e3b4a05382f482f815597b358446871a386f3b7e8e28f8b828.png
T T

. g s AT TTTT L |
. axon e

. i

. : ;

o

B
>
»
»
B
»
B
>

EPUB/6e6b4ca505235e9b63ff1f2f663061fbb725c58429adc6a62f35e391.gif

