

Générer des nombres aléatoires avec Hasard 0.9.6

Posté par Victor STINNER (site web personnel) le 10 juillet 2009 à 08:53.

Modéré par Mouns.

Étiquettes :

	développeur

	debian

[image: Sécurité]

Générer des nombres aléatoires avec un ordinateur (déterministe par définition) est un problème complexe. Il est facile d'introduire un biais par une maladresse. On a vu de nombreuses failles au fil des années, un exemple récent étant la faille introduite dans la version Debian d'OpenSSL (mai 2008).

Chaque système d'exploitation propose des périphériques et API différentes, et il existe diverses bibliothèques tierces, pour générer des nombres aléatoires. La bibliothèque Hasard propose une API simple, portable et haut niveau, pour limiter les erreurs d'un développeur, tout en réutilisant les briques existantes (ex: bibliothèques OpenSSL et gcrypt).

La version 0.9.6 supporte Linux, FreeBSD, Mac OS X et Windows, et devrait fonctionner sur n'importe quel système d'exploitation disposant des périphériques /dev/urandom et /dev/random. La bibliothèque Hasard est écrite en C, propose un binding Python, et est distribué sous licence BSD.
Une API simple :

Hasard propose, par exemple, une fonction hasard_ulong() pour générer un nombre dans une intervalle choisi par l'utilisateur garantissant une distribution uniforme. La bibliothèque standard C n'offre par de telle fonction, ce qui oblige chaque développeur à réimplementer une telle fonction. Et souvent ces réimplementations sont boguées (non uniformes).

Hasard s'occupe également d'initialiser le générateur de nombres avec une entropie de bonne qualité (typiquement /dev/urandom), plutôt qu'à partir du temps ou du numéro de processus.

Lisez le document Common errors qui présente en détail les problèmes qu'Hasard tente de résoudre.

Simulation ou sécurité ? Utilisez les profils !

Il existe deux principales utilisations des générateurs de nombres aléatoires : les simulations physiques (les jeu vidéos en étant un cas particulier) et la sécurité. Pour les simulations, un bon générateur doit être rapide et avoir une distribution uniforme. Pour la sécurité, même si l'attaquant est capable de contrôler la source d'entropie et/ou obtenir l'état interne du générateur, il ne doit pas être capable de prédire les précédents nombres ou prochains nombres générés.

Hasard offre plusieurs profils pour répondre aux différentes utilisations :

	@fast : générateur rapide destiné aux simulations

	@secure_blocking : générateur sûr (bloquant) pouvant être utilisé pour générer des certificats

	@secure_nonblocking : compromis entre la vitesse et la sécurité, générateur sûr mais non bloquant, pouvant être utilisé pour générer des mots de passe, identifiants de session et vecteurs d'initialisation.

Il existe également les profils @hardware et @test, réservés à des utilisations spéciales.

Le profil @fast utilise le générateur Mersenne Twister. Les profils @secure_blocking et @secure_nonblocking utilisent les bibliothèques OpenSSL et gcrypt, et les périphériques /dev/urandom et /dev/random. Consultez Hasard profile list pour les détails.

Vous pouvez également vous passer des profils en spécifiant directement les générateurs : un générateur pour générer des nombres (rng) et un pour initialiser la graine du premier (seed). Hasard en contient un grand nombre. Les générateurs peu fiables sont dans une seconde bibliothèque (hasardweak), pouvant être utile pour des raisons de compatibilité.

Tests et outils :

Hasard est régulièrement testé par une grande campagne de tests pour détecter les erreurs d'implémentation. Il est également possible d'utiliser les programmes TestU01 (le meilleur et plus complet), dieharder ou encore ENT, pour mesurer la qualité d'un générateur donné.

D'autres programmes sont disponibles dans le sous-dossier python/. Voyez par exemple le document Visualise random numbers using images pour tracer des images démontrant rapidement la faible qualité des générateurs congruentiels linéaires (générateurs les plus courants et malheureusement les plus mauvais).

Journaux des précédentes versions :

Pour en savoir plus, vous pouvez également consulter les journaux annonçant les précédentes versions :

	Sortie de la bibliothèque Hasard version 0.2 (31 mai 2008)

	Hasard 0.8 : bibliothèque de génération des nombres aléatoires (12 mai 2009)

Aller plus loin

	
Site du projet Hasard
(268 clics)

	
Consulter la documentation en ligne
(41 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections46.png

