

Gestion des logs avec Logstash, ElasticSearch & Kibana

Posté par Re_ le 29 septembre 2013 à 18:25.
Édité par yannig, rogo, palm123, NeoX, Benoît Sibaud, Benoît et eMerzh.
Modéré par claudex.
Licence CC By‑SA.

Étiquettes :

	logstash

	recherche

	visu_log

	elasticsearch

	supervision

	kibana

	redis

[image: Supervision]

Tout bon administrateur a un jour dû chercher une info à coup de grep, tail, awk dans les fichiers de logs des équipements qu'il gère.

Or la recherche est toujours un peu fastidieuse, avec les questions qui reviennent : "Où est-ce qu'ils sont ces logs ?", "Et c'est quoi le format déjà ?", "Tu connais le mot de passe pour se connecter sur le routeur ?".

Si on peut mettre en place une récupération des logs de façon centralisée avec des outils connus comme syslog, le trio Logstash, ElasticSearch et Kibana est un très bon candidat pour gérer et trouver efficacement des informations dans les milliers de lignes de traces que peuvent générer les divers services.

Sommaire

	
Présentation des logiciels
	Logstash

	ElasticSearch

	Kibana

	
Mise en place
	Premiers pas avec logstash

	Couplage avec un ElasticSearch externe

	Mise en place de Kibana

	Pour aller plus loin

Présentation des logiciels

Logstash

Logstash est un outil de collecte, analyse et stockage de logs. Aujourd'hui en version 1.2.1, il est développé en Java, sous licence Apache 2.0.

Pour la collecte, il sait gérer plus d'une trentaine d'événements. Un événement peut être un message syslog, un mail via le protocole IMAP, un tweet ou encore une commande IRC.

Il va ensuite analyser ces événements, et les mettre en forme à l'aide de filtres. Il existe également une vingtaine de filtres : standardisation de la date, découpage du message, structuration du message via grok.

Après filtrage, on obtient un message relativement clair, avec des couples clé-valeur que l'on pourra exploiter plus tard.

Enfin, il exporte ces données, traitées ou non, sous divers formats : email, sortie standard, fichier texte, alarme Nagios, entrée en base de données ElasticSearch.

Ainsi, on peut très bien traiter plusieurs flux de logs différents, appliquer un filtre à chacun pour harmoniser le tout, et les stocker correctement.

ElasticSearch

ElasticSearch est un moteur de recherche distribué, intégrant une base de données NoSQL, et RESTful, basé sur le moteur Apache Lucene.

La société ElasticSearch derrière le produit éponyme, est d’ailleurs l'employeur actuel du créateur de Logstash et de Kibana.

Kibana

Kibana est une interface web permettant de rechercher des infos stockées par Logstash dans ElasticSearch

Dans la seconde partie de la dépêche, nous reviendrons sur les fonctionnalités de ces 3 outils, avec un exemple de déploiement et utilisation.

Mise en place

Premiers pas avec logstash

Même si logstash est fait pour fonctionner sur un environnement distribué, il peut très bien s'utiliser sur une machine seule. Autre point de détail intéressant, le jar de logstash embarque une version d'ElasticSearch ainsi que Kibana.

Nous allons donc voir un premier exemple qui prendra le contenu des fichiers de log se trouvant dans le répertoire /var/log pour l'insérer directement dans une instance ElasticSearch.

Première chose, il nous faut un fichier logstash.conf avec le contenu suivant :

input {
 file {
 'exclude' => ['*.gz']
 'path' => ['/var/log/*.log']
 'type' => 'system logs'
 }
}
output {
 elasticsearch {
 embedded => true
 }
}

Téléchargeons la dernière version de logstash à l'emplacement suivant : http://logstash.net/ (version 1.2.1 au moment de la rédaction de cet article).

Il nous faut ensuite démarrer logstash avec la ligne de commande suivante :

java -jar logstash-1.2.1-flatjar.jar agent -f logstash.conf

Vous pouvez maintenant interroger votre instance ElasticSearch pour voir comment se porte tout ce petit monde :

curl http://localhost:9200/_status?pretty=true

Cette commande devrait vous renvoyer une longue liste au format JSON sur l'état de fonctionnement du moteur ElasticSearch (ici embarqué) :

{
 "ok" : true,
 "_shards" : {
 "total" : 10,
 "successful" : 5,
 "failed" : 0
 },
...
}

Afin de rendre la manipulation de tout ceci plus simple, nous allons activer Kibana. Pour cela, il suffit d'ajouter quelques options. La ligne de commande devrait maintenant ressembler à ça :

java -Xmx128M -jar logstash-1.2.1-flatjar.jar agent -f logstash.conf -- web

Lançons maintenant un navigateur et pointons sur l'adresse de cette interface (http://nomserveur:9292). Vous devriez voir apparaître l'interface de Kibana 3.

Alimentons maintenant un fichier avec un contenu quelconque :

echo une ligne > /var/log/unfichier.log

Si nous lançons maintenant une recherche sur le mot ligne, merveille des merveilles, Kibana nous la renvoie.

Couplage avec un ElasticSearch externe

Dans ce qui a précédé, nous avons vu comment utiliser Kibana et le moteur ElasticSearch embarqué dans le jar de logstash. Nous allons maintenant voir comment faire pour centraliser nos événements dans une seule instance ElasticSearch et pour cela, nous allons en démarrer une.

Pour cela, rien de bien compliqué, récupérer l'archive d'ElasticSearch et de la décompresser (version 0.90.3 téléchargeable à l'adresse suivante : http://www.elasticsearch.org/download/) :

tar xfv ~/elasticsearch-0.90.3.tar.gz

Jetons rapidement un coup d'œil au fichier elasticsearch-0.90.2/config/elasticsearch.yml. Pas grand chose à signaler puisque les valeurs par défaut devraient nous suffire. Notons toutefois qu'il est possible de spécifier un nom de cluster avec l'option cluster.name (dans le cas où nous voudrions augmenter le niveau de résilience et/ou de performance de notre moteur ElasticSearch) ainsi que le nom de notre nœud avec l'option node.name (par défaut, ce dernier prendra un nom aléatoire de super héros comics). A noter qu'il existe d'autres options pour spécifier le rôle qu'occupera le nœud courant dans le cluster (passif, répartiteur de requête etc.).

Une fois nos options passées en revue, lançons notre moteur avec la commande suivante :

cd ~/elasticsearch-0.90.2/bin
./elasticsearch -f

NB : Ici, nous lancerons ElasticSearch en mode bloqué. Si vous voulez laisser le démon tourner en arrière plan, il vous suffit de supprimer l'option -f.

Modifions maintenant notre fichier logstash.conf afin de faire référence à notre moteur ElasticSearch :

input {
 file {
 'exclude' => ['*.gz']
 'path' => ['/var/log/*.log']
 'type' => 'system logs'
 }
}
output {
 elasticsearch {
 bind_host => "mon-serveur-elasticsearch"
 cluster => "mon-cluster-elasticsearch"
 port => 9300
 }
}

Un arrêt/relance de logstash plus tard, voici notre moteur ElasticSearch en place. Il est possible d'y accéder au travers l'URL http://mon-serveur-elasticsearch:9300

Passons maintenant à la mise en place de l'interface Kibana.

Mise en place de Kibana

À noter que nous allons procéder à l'installation de la version 3 de Kibana qui n'est pas encore sortie mais qui apporte énormément de nouveautés.

Le côté innovant de cette interface est surtout qu'elle est écrite en javascript pur et ne fait appel à aucun langage comme Ruby, PHP ou autre Python. Ici, il suffit de disposer d'un espace de stockage quelconque accessible via un serveur Web (Apache, nginx), décompresser l'archive de Kibana, éditer votre fichier config.js (afin de pointer sur votre moteur ElasticSearch), y accéder au travers un navigateur et voilà !

Dans mon cas, j'utilise une instance Apache (sous RHEL/CentOS) et l'installation se fait de la manière suivante :

cd /var/www/html
tar xfv ~/kibana-master.tar.gz
mv kibana-master kibana3

A noter que la valeur présente dans le fichier config.js est par défaut la bonne ("http://"+window.location.hostname+":9200") si votre serveur apache est sur le même serveur que le moteur ElasticSearch.

Il suffit maintenant de se rendre sur l'adresse suivante : http://mon-serveur-apache/kibana3/ pour pouvoir commencer à travailler.

Attention ! Cette interface est très moderne et réclame un navigateur web moderne. Je ne parle même pas de problème avec le moteur IE puisque j'ai même rencontré des soucis avec des versions de Firefox un peu vieilles (version 10, ne me demandez pas pourquoi, je ne suis pas au service de déploiement des packages bureautiques). Pour ma part, j'utilise la dernière version de Chrome.

Par défaut, vous tomberez sur une interface de présentation de Kibana. Comme je pense que le blabla ne devrait pas trop vous intéresser, je vous invite à cliquer sur le lien Sample Dashboard en bas du texte à droite de la page.

De là, vous pourrez personnaliser votre requête afin d'en faire le tableau de bord que vous voudrez. Une fois que vous serez content de votre résultat et surtout afin de briller en société, vous pourrez soit :

	Exporter votre tableau de bord sous la forme d'une URL ;

	Sauvegarder sous la forme d'un fichier JSON ;

	Mais le fin du fin reste de le sauvegarder dans le moteur ElasticSearch lui même.

Pour les plus curieux, voici à quoi ressemble cette interface :

[image: Exemple de tableau de bord sous Kibana 3]

Pour aller plus loin

Maintenant que nous avons mis en place notre infrastructure de recherche, il faut être conscient que nous sommes tout de même face à un cas simplissime. En effet, pour chaque serveur, nous faisons appel à une instance logstash ce qui implique le lancement d'une JVM qui - je précise que je n'ai rien contre Java - consomme quand même pas mal de mémoire et peut se révéler embêtant si vous deviez déployer votre application dans un cloud. En effet, pour chaque VM que vous aurez à lancer, vous lancerez également un processus Java.

[image: Logstash décentralisé]

Le travail d'indexation peut également se révéler très consommateur de ressource. C'est là où vous pourrez éventuellement avoir à déployer des produits comme lumberjack, ou coupler logstash avec redis afin de mieux distribuer votre charge :

	De petites instances logstash se chargent de remonter vos logs dans redis (on parle de shipper) ;

	Redis centralise les messages ;

	Une instance de logstash consomme les messages afin de les indexer dans ElasticSearch (ici, logstash est configuré en indexeur) ;

	ElasticSearch stocke et met à disposition nos messages ;

	Enfin, Kibana nous sert à faire de la restitution.

Liens utiles :

	http://www.crocoware.com/?page_id=257

	http://mobz.github.io/elasticsearch-head/

	https://github.com/sonian/elasticsearch-jetty

	http://three.kibana.org/intro.html

Aller plus loin

	
Logstash
(2799 clics)

	
ElasticSearch
(1165 clics)

	
Kibana
(2312 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/f21ea773a40dc3f428dfb388132cb8d2d1f5961cc192e0148bed8deb.png
Logstash Search & Kibana 3 milestons 2

b4 Dashboard Control
—— S —— T
§ sm 15m 1h 6h 24h 20 &d =- B ®

histogram @
@2oom in @ Zoom Out | @ images (1992) ® styles (655) ® layout (5412) ® dynamic 3996) cats (1344) count per 5m | (13398 hits)

o
0450 0850 0850 0750 085O 0950 1080 1180 1280 1350 1450 1550 1650
o7t ozt ot o1 owm oym o owm o omt omt ot ot orm1 owm

é @ ¥ -4.6% (magess @ 2 4.63% (stye) @ ¥ -0.62% (eyory @ ¥ -4.8% (gmemis ¥ -1.18% (cats)

=

EPUB/0af2e3d9db2b9ed6e999e94e50ea5bed997266c51a47cae8d282ac3f.png
Legend: W Logstash ‘e Redis @ Elasticsearch

o & 2 &

Broker Indexer Storage & Search ~ Web Interface

Shipper

EPUB/imagessections82.png

