

Gitbuster II

Posté par feth le 24 juin 2011 à 15:55.

Modéré par baud123.
Licence CC By‑SA.

Étiquettes :

	git

	scm

	interface_graphique

	vcs

	dvcs

	frontend

	intéressant

[image: Gestion de versions]

« If there’s something strange

In your history

Who you gonna call?

GitBuster! »

Qui ne s’est jamais retrouvé au milieu d’un conflit de merge cataclysmique, à ne plus savoir distinguer ciel et terre ? À moins d’être un utilisateur expérimenté, ce genre de situation a de quoi rebuter et faire passer à côté de toute la richesse de Git.

	
	

	[image: image gitbuster]
	Gitbuster, développé par Julien Miotte est un frontal graphique à des outils comme « git rebase », « git cherry-pick » et « git filter-branch ». Le projet est parti à l’origine d’un besoin très personnel de l’auteur de faciliter l’utilisation de « git filter-branch », un outil très performant de réécriture des informations de commit. Le développement, guidé par les demandes de fonctionnalités, notamment de chefs de projet, s’est orienté vers d’autres fonctionnalités de Git, comme le rebase et le cherry-pick.

Gitbuster offre les fonctionnalités suivantes :

	
cherry-pick par glisser‐déposer d’une branche sur une autre ;

	
résolution interactive des conflits de merge ;

	
création d’une branche à partir d’un commit (git checkout 1234567 -b new_branch) ;

	
modification des métadonnées de n’importe quel commit de l’historique ;

	
cherry-pick à partir d’un dépôt distant (qu’il soit sur le Web ou dans un autre répertoire) ;

	
modification automatique des dates de commit d’une plage horaire vers une autre.

Avec Git, un conflit se produit lorsque l’on essaye d’appliquer un commit introduisant un changement à un certain endroit, alors que le commit courant présente un autre changement. Par exemple, j’essaye d’appliquer le patch suivant :

- ernest
+ napoléon

sur un fichier contenant :

text

antoine

Ici, le conflit sera assez simple, et une solution probable sera de remplacer antoine par napoléon. Prenons maintenant le conflit suivant :

<<<<<<<<<< HEAD
place = "mall"
print "Let’s go to the", place
====================
if command == "go":
 place = "mall."
 print "Let’s go to the", place
>>>>>>>>>>> [fix] Cosmit (message volontairement élusif)

Comment le résoudre ? La modification à appliquer porte‐t‐elle sur l’ajout du « if command » ou juste sur le « . » à la fin de « mall » ? Ce commit peut en effet venir d’une branche où le développeur travaille en ce moment sur l’ajout d’une fonctionnalité de commande, mais veut uniquement appliquer ce commit, qui ne concerne en fait que le remplacement de « "mall" » par « "mall." ». Si le commit est récent, ou si le message de commit est suffisamment explicite, il y a des chances que le développeur se souvienne de la modification apportée. Mais que se passe‐t‐il si les souvenirs sont plus lointains, ou si le développeur qui merge n’est pas l’auteur de la modification ?

Parfois, les conflits s’étendent à plusieurs fichiers. Pas évident de déterminer la modification qu’on souhaitait apporter et comment fusionner « à la main » l’état actuel du fichier et la modification.

Gitbuster propose, pour la résolution de conflits de merge, une interface de résolution explicite, présentant :

	l’état du fichier avant le merge (ou un message indiquant qu’il n’existait pas avant le cherry-pick) ;

	le patch sensé être appliqué (mais qui génère un conflit) ;

	l’état « non-mergé » du fichier ;

	les options de résolution possibles (ajouter le fichier tel quel, ajouter en éditant, supprimer le fichier).

[image: gitbuster solutions]

Gitbuster peut aussi être lancé juste après un conflit lors d’un « git rebase -i », il ne présente alors que la fenêtre de résolution pour ce conflit particulier.

[image: special_mode]

Le cherry-pick par glisser‐déposer :

[image: drap'n'dropping]

En coulisses

Gitbuster est développé notamment grâce à lui‐même, sur GitHub, au moyen de Python, GitPython et PyQt. Il est constitué de deux projets : gfbi-core pour l’accès aux données et gitbuster pour l’interface graphique.

Pour tester / installer

$ mkvirtualenv gitbuster # gitbuster recommande virtualenwrapper
$ pip install gitbuster

L’utilisation d’autres interfaces entre Python et les systèmes de gestion de versions centralisés ou non est à l’étude (citons Dulwich, pygit2 et évidemment Mercurial).

Un mode démo est aussi disponible et permet de lancer Gitbuster dans un virtualenv, sans modifier son système. Pour lancer le mode démo, téléchargez les sources et lancez le script « demo.sh ».

Gitbuster est installable via pip et supporte setuptools, distutils et distutils2.

What’s next?

Pour la suite, Gitbuster est un logiciel libre, et son avenir dépend avant tout du temps disponible de son auteur principal. Il est possible qu’il devienne agnostique par rapport au gestionnaire de version sous‐jacent. Parmi les évolutions prévues :

	gérer les fonctionnalités de push et de pull de code ;

	pouvoir éditer les paramètres de suivi (branch tracking) ;

	mieux gérer les historiques non‐linéaires ;

	prendre en compte Mercurial et Subversion ;

	empaquetage dans une distribution GNU/Linux près de chez vous ;

	« merger » le ciel et la terre, l’eau et le feu.

Encore merci aux relecteurs de la dépêche et aux testeurs qui se reconnaîtront.

Aller plus loin

	
Gitbuster sur GitHub
(780 clics)

	
Gitbuster sur PyPI (Python package index)
(150 clics)

	
Profil de Julien Miotte sur GitHub
(155 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections81.png

