

Grammalecte, correcteur grammatical

Posté par Olivier le 22 avril 2015 à 01:16.
Édité par Benoît Sibaud, palm123 et Nils Ratusznik.
Modéré par Nils Ratusznik.
Licence CC By‑SA.

Étiquettes :

	grammatical

	grammalecte

	orthographe_et_grammaire

	hunspell

	financement_participatif

	libreoffice

	openoffice

[image: Bureautique]

[image: Grammalecte logo]

Grammalecte est un correcteur grammatical récent (né en janvier 2011), écrit en Python, dédié à la langue française, et, pour l’instant, uniquement disponible pour LibreOffice et OpenOffice. Une campagne de financement participatif est lancée pour porter Grammalecte sur Firefox et Thunderbird et en faire par ailleurs un serveur indépendant (voir plus bas). Cette dépêche peut donc intéresser tous ceux qui s’intéressent à la grammaire.

Sommaire

	
Principes de fonctionnement
	Historique des fonctionnalités

	Comparaison avec LanguageTool

	Le préprocesseur de texte par l’exemple

	Le dictionnaire

	Pourquoi la correction grammaticale est difficile

	
Campagne de financement
	Fournir de meilleures suggestions

	Améliorer la détection des erreurs

	Désambiguïsation

	Fiabilité des versions (tests unitaires)

	En finir avec la dépendance à Hunspell et à LibreOffice/OpenOffice

	Conversion du code en JavaScript pour l’extension Firefox/Thunderbird

	
Autres considérations
	Les autres langues ?

	Et la gestion du dictionnaire ?

	Les correcteurs grammaticaux servent-ils à quelque chose ?

	Le mot de la fin

Grammalecte est un dérivé de Lightproof, un correcteur écrit initialement pour le hongrois. Le logiciel s’est peu à peu éloigné de Lightproof avec les années. Même si Lightproof a été conçu pour gérer diverses langues, j’ai eu besoin de modifier nombre de choses dans le moteur interne pour le rendre efficace pour le français. Sans cela, pas grand-chose n’aurait été possible.

Ce correcteur est né un peu par hasard. En 2010, j’avais décidé de m’occuper de la partie française de LanguageTool, avec réticence, car je n’aime ni le Java et ni le XML dans lequel sont écrites les règles de grammaire. Par ailleurs, je voulais contrôler le processus de création des règles de contrôle. Or, à l’époque, LanguageTool possédait de nombreuses règles que je n’aimais pas, qui généraient beaucoup de faux positifs, mais il eût été indélicat d’envoyer à la benne tout ce qui me déplaisait. Enfin, comme je ne pouvais pas non plus ajuster certaines règles typographiques comme je l’aurais voulu (le développement étant centralisé, il fallait convaincre), j’ai finalement laissé tomber et je me suis penché sur Lightproof, qui avait l’avantage de fournir un kit minimal à partir duquel je pouvais faire comme je l’entendais. Je voulais me concentrer sur l’essentiel, éviter autant que possible les faux positifs, et être assez strict sur les questions typographiques. J’ai d’abord travaillé pour moi, surtout par curiosité, afin de voir ce qui était possible.

Après pas mal de déboires divers, la première version alpha paraît en janvier 2011 et connaît un petit succès d’estime. Du coup, bien que je n’avais pas vraiment l’intention de me consacrer à ça, j’ai mis le doigt dans l’engrenage.

Principes de fonctionnement

D’une manière générale, Grammalecte est un correcteur utilisant les motifs de correspondance (“pattern matching”) pour détecter les erreurs. Il examine le texte qu’on lui passe en se basant sur une liste de règles de contrôle, qu’il faut bien sûr écrire à l’avance parce que le correcteur ne peut pas deviner ce qui est une erreur, il ne fait pas de suppositions. Pour savoir à quoi correspondent les mots, il se base sur un lexique qui lui indique leur nature grammaticale. Les règles de contrôle sont décrites par un motif de détection d’erreur, des conditions d’application, un message informatif et si possible des suggestions. (Détecter une erreur et suggérer une correction sont deux choses plus distinctes qu’il n’y paraît. Suggérer peut s’avérer plus difficile que détecter une erreur, je reviendrai sur ce point plus tard.)

Un motif de détection est une expression régulière plus ou moins complexe. Une fois un motif détecté, il est en général nécessaire de faire une analyse plus poussée des éléments, notamment en examinant la nature grammaticale des mots du motif repéré, ce qui se fait par d’autres expressions régulières. Bref, on lance des expressions rationnelles tous azimuts, tout le temps. Les conditions d’application et l’analyse des motifs trouvés se font avec du code ad hoc en Python, simple ou complexe, c’est selon.

La difficulté de fonctionner avec des motifs de correspondance, c’est que les règles à écrire sont innombrables, tant l’écriture d’une langue humaine recèle de possibilités, tant le nombre d’erreurs possibles est grand. Par ailleurs, les faux positifs (ou fausses alertes) sont très difficiles à éviter. Car, s’il est facile d’écrire une règle pour détecter une erreur dans un contexte donné, il est difficile d’écrire une règle valable pour tous les cas de figure possibles.

L’atout de Grammalecte pour faire face à l’explosion combinatoire des possibilités, c’est son préprocesseur de texte.

Le préprocesseur de texte est un outil qui transforme en interne le texte à corriger. Il le modifie pour simplifier le travail des règles de contrôle. Pour ce faire, il dispose de règles de transformation qui sont décrites par un motif de détection, des conditions d’application et une chaîne ou une fonction de remplacement.

Néanmoins, toutes les transformations ne peuvent être mises en œuvre en une seule fois. C’est pourquoi le correcteur va effectuer plusieurs passes sur le texte. Chaque passe s’effectue en deux temps : d’abord l’application des transformations du préprocesseur de texte, puis les règles de contrôle. Ceci permet de simplifier le texte au fur et mesure des analyses et de supprimer les éléments qui ont été vérifiés ou qui n’ont pas besoin de l’être, puis de se concentrer lors de la passe suivante sur d’autres points.

Le correcteur effectue à l'heure actuelle six passes sur le texte. (Théoriquement, il peut en faire un nombre infini, il suffit de spécifier dans le fichier des règles qu’on veut une nouvelle passe et d’écrire de nouvelles instructions.)

	La première passe contrôle les paragraphes entiers et sert notamment à vérifier tous les aspects typographiques, les espaces insécables, les guillemets, les espaces surnuméraires.

	Après cette première passe, le paragraphe est scindé en phrases.

	La seconde et la troisième passe servent à contrôler notamment les accords entre les noms et les adjectifs, les pluriels, le genre, etc.

	Les trois passes suivantes vérifient principalement les accords des verbes avec leur sujet, les participes passés, les formes interrogatives ou impératives.

Il n’est pas du tout exclu d’ajouter de nouvelles passes.

Historique des fonctionnalités

Grammalecte n’a pas toujours fonctionné ainsi. Dans la version 0.1, comme Lightproof, il faisait tout le travail en une seule passe, paragraphe par paragraphe. Il m’est vite apparu qu’il serait pratique d’effectuer le contrôle en deux temps, paragraphe par paragraphe, puis phrase par phrase. Et il m’a semblé judicieux de simplifier le texte entre les deux passes. Ainsi naquit la version 0.2, qui prenait déjà pas mal de distance avec Lightproof. Le préprocesseur de texte, qui n’était au commencement qu’une commodité, m’est apparu peu à peu comme un élément essentiel, un outil susceptible de résoudre des problèmes quasi insurmontables sans lui. C’est pourquoi, à partir de la version 0.3, le préprocesseur est devenu la baguette magique avec laquelle une quantité gigantesque de difficultés ont été résolues. À ce stade, le correcteur effectuait déjà cinq passes, et il a fallu plus tard en rajouter une sixième.

Avec la version 0.3 sont apparus les outils annexes : le lexicographe, le formateur de texte, puis le conjugueur.

Le lexicographe et le conjugueur sont deux outils dont le rôle est pédagogique : informer et aider l’utilisateur en cas de doute. Le lexicographe, avec un clic droit, donne de la nature grammaticale de n’importe quel mot. Le conjugueur permet de connaître, là encore en quelques clics, la conjugaison de n’importe quel verbe. Par exemple, un clic droit sur le mot “suis” vous permet d’accéder immédiatement à la conjugaison d’être et de suivre, ce qui évite la peine d’avoir à chercher sur le Net ou dans son dictionnaire. Comme un correcteur grammatical ne saurait corriger toutes erreurs possibles, il m’a toujours paru utile de fournir une aide pédagogique à l’utilisateur, car lui seul peut vraiment décider.

[image: Grammalecte - lexicographe]
[image: Grammalecte - conjugueur]

Le formateur de texte est un outil de correction typographique automatisé, qui propose de corriger la plupart des erreurs en un seul clic, même s’il en y a des milliers. Il propose aussi quelques fonctions de nettoyage et de restructuration d’un texte. Cet outil, que je jugeais anecdotique au commencement, est celui qui a suscité le plus d’engouement et que les utilisateurs ont le plus sollicité. Les outils qui bossent tout seul, ça semble beaucoup plaire. ;)

[image: Grammalecte - formateur de texte]

La version 0.4 apporte beaucoup d’améliorations internes, mais surtout des mécanismes de suggestion qui permettent enfin d’offrir dans la plupart des cas autre chose qu’un simple message d’erreur (parfois mystérieux pour ceux qui ne savent plus ce qu’est un COD ou un participe passé).

[image: Grammalecte - suggestions]

Comparaison avec LanguageTool

LanguageTool, comme Grammalecte, fonctionne avec des motifs de correspondance (“pattern matching”) chargés de déceler les erreurs. Et les similitudes s’arrêtent là. Dans le détail technique, tout est différent, et ces différences font que le potentiel qu’on peut tirer de ces deux logiciels n’est pas le même.

LanguageTool est très formaliste, il faut écrire des règles en XML. C’est descriptif, rigide et assez contraignant, mais il n’est pas difficile de rentrer dans le code des règles. Tout est assez intelligible, même si c’est verbeux.

Grammalecte, en revanche, est beaucoup moins formaliste, c’est plutôt un vaste chantier en cours de construction, avec pas mal de bizarreries, mais c’est plutôt souple, et on peut se permettre bien plus de fantaisies. En revanche, concernant la lisibilité des règles, disons que ce n’est pas son point fort, car les règles appellent directement du code en Python et il faut toujours garder à l’esprit qu’on analyse un texte qui va être modifié par le préprocesseur de texte. De plus, il faut se plonger dans le code du moteur pour comprendre ce que font certaines fonctions. Par ailleurs, l’ordonnancement des règles est primordial. Si vous déplacez quelque chose sans comprendre comment ça fonctionne et les principes généraux, il est fort probable que vous cassiez quelque chose. Même quand on connaît bien l’ensemble, c’est assez difficile, attendu que les effets de bord ne sont pas toujours évidents à estimer.

LanguageTool ne possède pas de préprocesseur de texte, il lui faut plus de règles de détection que Grammalecte pour faire des choses similaires. Il en faut tellement plus qu’il est peu probable qu’en l’état actuel, LanguageTool puisse faire bien des choses que fait Grammalecte aujourd’hui relativement aisément, car il faudrait écrire énormément de règles.

Mais LanguageTool dispose d’un outil que Grammalecte ne possède pas : un désambiguïsateur. LanguageTool n’effectue qu’une seule passe sur le texte, phrase par phrase. En premier lieu, il découpe les phrases en “tokens” (mots, ponctuations, guillemets, etc.). Puis, grâce à son désambiguïsateur, il fait de la désambiguïsation sur les “tokens” ambigus, c’est-à-dire qu’il détermine la nature grammaticale d’un mot quand il en a plusieurs (par exemple : “est” peut être un nom masculin, une conjugaison du verbe être, un élément d’une locution adverbiale “id est”). En somme, grâce à cet outil, LanguageTool pose des étiquettes explicatives sur les tokens. Puis, il analyse la succession des tokens selon les règles écrites. Il renvoie les erreurs et c’est fini. Ce qu’il faut retenir, c’est que la désambiguïsation permet d’avoir plus de certitudes dans l’analyse du texte.

De son côté, Grammalecte ne découpe pas les phrases en tokens. Dans Grammalecte, il n’y a pas de tokens ni même de mots à proprement parler, il n’y a que des zones de texte définies par des expressions régulières qui servent de déclencheurs pour une analyse spécifique des passages correspondant aux motifs trouvés. On ne travaille pas sur des éléments déterminés à l’avance, mais sur des zones, souvent des mots bien sûr, mais aussi des bouts de phrases ou des motifs de caractères sans nécessairement se soucier des délimitations des mots et de leur position dans le texte (même si on s’en soucie assez souvent comme vous pouvez l’imaginer). Je peux par exemple chercher un motif “ni… ni…” sans me soucier du nombre de “tokens” qu’il pourrait y avoir entre les deux “ni”, sans me soucier où c’est précisément. C’est souple, mais cette souplesse se paye par une plus grande complexité et c’est régulièrement l’occasion de faire des nœuds mentaux pour comprendre ce qui se passe, surtout pour gérer toutes les questions d’apostrophes, de majuscules, de traits d’union, de délimitations des mots (plus problématique que ce que vous pouvez supposer) et divers détails subtils qui n’ont l’air de rien, mais qui compliquent souvent la tâche de manière imprévue. Certains problèmes, on ne les auraient pas, ou seulement à moindre degré, avec des phrases découpées de manière prédictible et uniforme en “tokens”. Cela dit, la tokenisation ne semble pas la solution miracle non plus, si j’en crois ce que j’ai lu parfois sur la liste de discussion de LanguageTool, car il ne semble pas évident de gérer la question des apostrophes et des traits d’union.

Par ailleurs, dans Grammalecte, comme à chaque passe le texte est transformé, un même motif de correspondance ne renverra pas forcément la même chose selon la passe dans lequel il est lancé. Il faut toujours garder à l’esprit où on est dans le flux des règles de transformation et estimer ce qui se passe globalement.

Et, comme il n’y a pas de “tokens” dans Grammalecte, il n’y a pas non plus de désambiguïsateur qui pose des étiquettes sur les mots. Le correcteur fait quand même de la désambiguïsation, mais à la volée, c’est-à-dire que chaque règle se charge elle-même de s’y retrouver parmi les ambiguïtés du texte. C’est un désavantage par rapport à LanguageTool. Ce dernier permet d’écrire des règles dans un environnement plus “sûr” que dans Grammalecte où règnent l’incertitude et le flou. Cela dit, le préprocesseur de texte, encore lui, va nous épargner bien des peines et solutionner nombre de cas difficiles, en faisant faire de la “désambiguïsation” à sa manière, c’est-à-dire en supprimant tout simplement des zones de texte.

Les règles de transformation du préprocesseur de texte consistent pour la très grande majorité à faire du nettoyage, c’est-à-dire à effacer le superflu, ce qui, de fait, nous évite de faire un gros travail d’analyse. Certaines règles de transformation introduisent aussi dans le texte des caractères signalétiques que certaines règles de contrôle savent reconnaître. Et quelques règles servent réellement à modifier ce qui est écrit, là encore pour simplifier. Cette manière de faire apporte beaucoup d’avantages par rapport à LanguageTool, mais dans certains cas s’avère moins efficace que l’étiquetage. Le problème de Grammalecte, c’est une certaine forme d’amnésie, le préprocesseur nettoie et fait parfois du signalement, mais après ça chaque règle se débrouille seule.

Hormis les différences techniques inhérentes aux logiciels, la manière d’écrire les règles peut aussi faire varier grandement leurs capacités de détection. On peut écrire les règles de manière stricte (moins de détection d’erreurs, moins de faux positifs) ou audacieuse (plus de détection, plus de faux positifs). LanguageTool possède des règles de contrôle que je n’ai pas implémentées dans Grammalecte parce que je les trouve trop susceptibles de générer des faux positifs en l’état actuel des choses. Il y a des vérifications que Grammalecte fait que son rival n’essaie pas de faire (trop risqué ou compliqué pour lui). Ensuite, il y a les règles qu’un correcteur peut juger superflues. Par exemple, LanguageTool vérifie si vous écrivez correctement Britney Spears, Warren Buffett et des tas d’autres célébrités, ce que Grammalecte ne prend pas la peine de contrôler.

Le préprocesseur de texte par l’exemple

Mettons que nous tapons dans Writer :

 Cette pièces de théâtre-là (http://www.site.fr/blabla) d’Albert Camus² sur «l’absurde» étaient, comme d’habitude, passionnants.

Trois erreurs grammaticales, deux typographiques.

Sachez d’abord que le texte que le correcteur reçoit ne correspond pas toujours au texte que voit l’utilisateur. En effet, les marques de formatage sont effacées. Si vous tapez des passages en italique ou gras, l’italique et le gras vont disparaître. Dans notre exemple, il y a le caractère “²”. Il peut être obtenu en tapant le caractère “²” ou tapant le caractère “2” et en le mettant en exposant. Dans le second cas, la mise en exposant est une marque de formatage. C’est probablement ainsi que l’utilisateur a obtenu ce caractère. Dans ce cas, le correcteur reçoit :

 Cette pièces de théâtre-là (http://www.site.fr/blabla) d’Albert Camus2 sur «l’absurde» étaient, comme d’habitude, passionnants.

Autrement dit, même si l’utilisateur voit le caractère “²”, le correcteur reçoit le caractère “2”.

Passe 1. Pour commencer, le préprocesseur de texte va supprimer les URL (entre autres choses).

 Cette pièces de théâtre-là (@@@@@@@@@@@@@@@@@@@@@@@@@) d’Albert Camus2 sur «l’absurde» étaient, comme d’habitude, passionnants.

Ensuite, les règles de contrôle vont vérifier les espacements, la ponctuation, les guillemets, etc. C’est lors de la première passe que le correcteur signalera qu’il faut des espaces insécables autour de “l’absurde”.

Passe 2. Les arobases sont supprimées. La note de référence “2” qui suit Camus est supprimée, ainsi que les guillemets. On obtient alors :

 Cette pièces de théâtre-là (_________________________) d’Albert Camus_ sur _l’absurde_ étaient, comme d’habitude, passionnants.

Passe 3. C’est dans cette passe qu’on nettoie le plus. On supprime le “-là” qui suit “théâtre”. Le patronyme “Camus” est supprimé. Puis “d’Albert” est supprimé, ainsi que “comme d’habitude”. Puis “pièces de théâtre” est simplifié et réduit à un seul mot : “pièces”. Comme il n’y a plus que du vide entre les parenthèses et les virgules, on les supprime aussi. Ce qui donne :

 Cette pièces ___ sur _l’absurde_ étaient __________________ passionnants.

Lors de cette passe, la première erreur d’accord sur “pièces” est repérée.

Passe 4, 5 et 6. Après la 3 ème passe, on considère que les accords dans les groupes nominaux ont été vérifiés. Donc on simplifie les groupes nominaux afin de pouvoir vérifier l’accord avec les verbes. Ce qu’on fera dans les 3 passes suivantes. Ici, “sur l’absurde” est supprimé puisqu’il ne peut être un sujet. Il reste :

Cette pièces ___ étaient __________________ passionnants.

À présent, il n’y plus rien à simplifier. Après la correction de “pièce”, le correcteur verra l’erreur sur “étaient” et après la correction de ce dernier, il pourra faire les bonnes suggestions sur “passionnants”.

Ce système n’est pas parfait. Voici un autre exemple.

 Les petits étais endormis.

Ici, le correcteur ne détecte rien, car “étais” est aussi un nom masculin pluriel.

D’autres erreurs que le correcteur peut trouver grâce au préprocesseur de texte :

 L’homme sur le bateau de Patrick viens de temps en temps mangé chez moi.

Ces marchands passe leur temps à se quereller.

Ils jugeront en toute impartialité de ce cas délirante.

Ils sont de manière si étonnante et si admirable arrivé à ce résultat…

Les tests grand public de Jean-Paul montre des résultats surprenants.

Ils ont à plusieurs reprises perdus leur sang-froid.

Ces attaques à main armée donne la chair de poule.

Réfléchir à tête reposée prends du temps.

Des chambres plus ou moins fortement éclairé.

Ce qui, la plupart du temps, donnes des maux de tête.

La N.S.A. espionneras toujours tout le monde.

Avec le dernier exemple, vous verrez l’une des choses que le préprocesseur réécrit pour faciliter le travail du correcteur. En interne, la graphie “N.S.A.” a été transformée en “NSA” (le message d’erreur trahit cette modification).

Le préprocesseur fait aussi de la simplification de certains syntagmes nominaux. Exemples :

armé jusqu’aux dents --> armé

fille au pair ---------> fille

médecin de garde ------> médecin

Le préprocesseur peut faire énormément de choses, mais il ne peut en l’état actuel résoudre tous les problèmes, car il doit lui-même demeurer prudent quand il fait face à des ambiguïtés. Dans bien des cas, il arrivera à simplifier les groupes nominaux. Dans d’autres cas, il n’y arrivera pas. Il y a encore beaucoup de progrès à faire sur ce chapitre. Concevoir un désambiguïsateur aiderait beaucoup. Un préprocesseur de texte associé à un désambiguïsateur, ce serait une combinaison utile pour accroître notablement la détection des erreurs.

Le dictionnaire

La graphie d’un mot français ne permet pas de déterminer sa nature. Un mot finissant par -ent peut être un nom, un adjectif, un adverbe ou la forme conjuguée d’un verbe. C’est pourquoi un correcteur grammatical ne peut souvent pas grand-chose sans un lexique étiqueté référençant tous les mots d’une langue. Cet étiquetage, c’est la base de la connaissance du correcteur. Le dictionnaire français pour Hunspell, le correcteur orthographique, est actuellement la source directe de Grammalecte.

Quelques données sur le dictionnaire :

	plus de 77000 entrées,

	toutes les entrées sont grammaticalement étiquetées,

	environ 12 % d’entre elles sont sémantiquement étiquetées (médecine, informatique, botanique, etc.), mais cet étiquetage ne sert pas encore.
Améliorer la base lexicale et son étiquetage, c’est l’une des tâches les plus importantes de la conception d’un correcteur grammatical.

Ce dictionnaire, vous l’avez probablement tous utilisé, puisqu’il est inclus dans Firefox, Thunderbird, LibreOffice, Chrome, Opera et une multitude de logiciels dont je serais bien en peine de faire la liste si on me la demandait. Cela dit, vous en utilisez peut-être une vieille version, je ne l’intègre qu’à LibreOffice et ne fournit des extensions que pour OpenOffice, Firefox et Thunderbird. L’intégration dans les autres logiciels est faite par d’autres personnes à des rythmes très divers.

Tout le travail sur le dictionnaire se fait sur Dicollecte, où sont collectées les propositions des utilisateurs.

Pourquoi la correction grammaticale est difficile

Commençons par un exemple :

 Il est conseiller à la mairie. [Correct]

Il est aller à la mairie. [Incorrect]

Pourtant, l’étiquetage grammatical de ces phrases est strictement identique. Les mots “conseiller” et “aller” sont tous les deux à la fois un verbe à l’infinitif et un nom masculin. Or, un correcteur grammatical ne comprend absolument rien à ce que vous écrivez, même si vous ne faites aucune erreur. Il ne peut se baser que sur une suite d’étiquettes grammaticales.

Il est parfois irritant de s’entendre dire : “il y a une erreur ici, c’est évident”. Car, en fait, il y a rarement quoi que ce soit d’évident pour un correcteur grammatical. Le mot “évident” n’est lui-même pas seulement un adjectif, c’est aussi la conjugaison du verbe “évider” à la 3e personne du pluriel au présent. D’une manière générale, il semble souvent facile d’écrire une règle qui détecte les erreurs dans une phrase ou un contexte spécifique. En revanche, il est souvent difficile, voire impossible, d’écrire une règle qui détecte les erreurs dans tous les contextes sans générer nombre de faux positifs. Du coup, l’écriture des règles, c’est très souvent un compromis entre ce qu’on voudrait détecter et la tolérance pour les fausses alertes (la mienne est assez basse).

Autres exemples :

 Des caractéristiques matériels [Incorrect]

Des matériels caractéristiques [Correct]

Des nouvelles caractéristiques [Correct]

Des matérielles caractéristiques [Incorrect]

Vous, humains, savez que “caractéristiques” est dans le premier cas un nom féminin. Mais c’est aussi un adjectif épicène. Le correcteur grammatical ne sait pas décider si ce doit être un nom ou un adjectif. Pour lui, “matériel”, “caractéristique” et “nouvelle” sont dans tous les cas nom et adjectif.

Autrement dit, l’étiquetage grammatical ne suffit pas. Seul le sens permet aux humains de trouver les erreurs. Mais, comme je l’ai dit, le correcteur ne comprend rien du tout. Il faudrait prendre le temps d’étiqueter les entrées avec des informations plus spécifiques, susceptibles de nous aider à contextualiser ce qu’on corrige. Une tâche titanesque. Nous en sommes encore loin.

Et ce ne sont là que des exemples très simples, très loin des phrases complexes qu’on peut écrire.

Parmi les difficultés du français, l’une des principales, c’est qu’il y a énormément de mots dont la nature grammaticale dépend du contexte :

 tu ________ pronom personnel sujet épicène singulier // participe passé du verbe taire

lui _______ pronom personnel sujet masculin // pronom personnel objet masculin et féminin // participe passé du verbe luire

sommes ____ forme conjuguée de être // forme conjuguée de sommer // nom féminin ou masculin pluriel

ton _______ déterminant // nom masculin

son _______ déterminant // nom masculin

la ________ déterminant // nom masculin // pronom personnel objet

avoir _____ nom masculin // verbe auxiliaire

été _______ participe passé du verbe être // nom masculin

est _______ forme conjuguée de être // nom masculin // élément d’une locution latine (id est)

a _________ forme conjuguée de avoir // nom masculin invariable

avions ____ forme conjuguée de avoir // nom masculin pluriel

pas _______ adverbe de négation // nom masculin

une _______ déterminant // nom féminin (la une des journaux)

aura ______ forme conjuguée de avoir // nom féminin

as ________ forme conjuguée de avoir // nom masculin

contre ____ préposition // nom masculin singulier // forme conjuguée de contrer

vers ______ préposition // nom masculin singulier ou pluriel

mais ______ conjonction de coordination // adverbe // nom masculin pluriel

si ________ conjonction de subordination // adverbe // nom masculin

évident ___ adjectif masculin // forme conjuguée de évider

dément ____ adjectif masculin // forme conjuguée de démentir

prise _____ nom féminin // participe passé de prendre // forme conjuguée de priser

courant ___ nom masculin // participe présent de courir // préposition

or ________ conjonction de coordination // nom masculin singulier

plus ______ adverbe // adverbe de négation // nom masculin

point _____ adverbe de négation // nom masculin singulier

vis _______ nom féminin // forme conjuguée de voir et de vivre

montre ____ nom féminin // forme conjuguée de montrer

partis ____ forme conjuguée de partir // participe passé pluriel // nom masculin pluriel

vous ______ pronom personnel sujet ou objet.

nous ______ idem

etc.

Il y a de nombreux mots qui ont plusieurs natures grammaticales, et le correcteur doit trouver laquelle s’applique dans le contexte. Il faut constamment faire attention à ça, sinon c’est d’explosion de faux positifs assurée. Pourtant, malgré les règles de prudence, il y a toujours des faux positifs. Parce que si on ne signalait que les erreurs certaines, on ne signalerait pas grand-chose.

L’autre problème, c’est que les homonymes en français sont nombreux et les confusions pas forcément faciles à détecter.

	a / à / as / ha

	est / et / es / ai / ait / aie / aies / ais / hé / eh / haie / hais

	été / étai / était / étais

	dans / d’en / dent

	desceller / déceler / desseller

	faite / faîte / fête

	la / là / l’a / l’as / las

	mal / mâle / malle

	or / hors

	ou / où

	on / ont

	notre / nôtre

	par / part / pare

	prêt / près / pré

	quand / quant / qu’en

	sans / s’en / sens / c’en / cens / sent / cent / sang

	serre / serf / sers / cerf

	sot / seau / sceau

	soi / soie / soit / sois

	son / sont

	soutien / soutiens / soutient

	suis / suie / sui / suit

	tort / tore / taure / tord

	ver / vers / vert / verre

Ajoutons à cela les conjugaisons homophones :

	manger / mangé / mangez / mangeais / mangeait

	fus / fut / fût

En bref, la difficulté du français, c’est qu’il est rempli de nombreux mots qui s’écrivent de la même façon avec des natures différentes et de nombreux mots différents qui se prononcent de la même façon et qui engendrent nombre de confusions à l’écrit.

Les manières d’écrire en respectant la grammaire sont extrêmement nombreuses, mais les manières de mal écrire sont illimitées.

Campagne de financement

[image: Campagne de financement participatif]

Pour ceux que ça intéresse, c’est sur Ulule.

Je vais évoquer ici quelques aspects techniques dont je ne parle pas sur Ulule.

Fournir de meilleures suggestions

Détecter les erreurs et suggérer quelle est la bonne graphie sont deux choses bien différentes. Dans certains cas, il est plus facile de détecter les erreurs que de savoir que suggérer. Mais l’inverse est aussi vrai, il existe des erreurs difficiles à détecter où il serait pourtant facile de suggérer la graphie correcte.

Grammalecte parvient à présent à faire des suggestions dans la plupart des cas, mais il reste quand même du travail à faire sur ce point. Prenons un exemple simple, une erreur que j’ai fréquemment vue sur ce site :

 Je m’en fou.

[image: Erreur fréquente sur LinuxFR]

Ici, le correcteur voit l’erreur mais est incapable de fournir une suggestion, parce qu’il n’existe aucun lien entre l’entrée “fou” et l’entrée “foutre” d’où dérivent toutes ses conjugaisons. Le correcteur ne sait pas où chercher une conjugaison adéquate. Pour parfaire le système de suggestion, il faudrait établir des passerelles entre tous les mots grammaticalement distincts sur leurs liens phonétiques éventuels.

Évidemment, si on prend la peine d’écrire des règles spécifiques pour gérer les cas particuliers, c’est possible de suggérer correctement, mais ce ne serait guère efficace dans la mesure où les mots homophones sont nombreux. Il faudrait écrire trop de règles.

Améliorer la détection des erreurs

Pour l’instant, si le préprocesseur de texte est déjà très employé, il est encore sous-exploité et on peut aller plus loin, mais cela réclame du temps et beaucoup de tests et de patience. La correction grammaticale est encore grandement améliorable, même si les choses “faciles” à faire sont de moins en moins nombreuses. La simplification des groupes nominaux pourrait être bien meilleure, c’est un vaste chantier qui est entamé depuis environ un an. Le principal obstacle à son renforcement, c’est justement l’absence d’une désambiguïsation efficace.

Il y a encore aussi pas mal de vérifications simples à écrire sur des tas de confusions possibles. Je me suis assez peu occupé de ça jusqu’à présent.

Le développement du correcteur suit depuis le commencement la même logique : une montée en puissance progressive en essayant d’éviter les faux positifs.

Écrire des règles, c’est assez rapide ; détecter les faux positifs, c’est beaucoup plus long ; ceux-ci ont tendance à survenir là où on s’y attend le moins. C’est ce qui est le plus exigeant : maintenir un ensemble de règles, améliorer l’existant, tester, trouver de nouvelles possibilités. Lorsqu’on s’occupe d’un correcteur grammatical, on passe surtout son temps à peaufiner des détails, à ajuster le fonctionnement de l’existant, à arrondir les angles. Oubliez l’idée de concevoir l’algorithme ultime qui saura gérer tous les cas. Même quand on est à peu près sûr d’écrire une petite règle tranquille qui ne générera aucun faux positif, la réalité va très probablement nous rappeler à l’ordre et nous obliger à slalomer sur ce qui paraissait au commencement comme une belle ligne droite. S’occuper de correction grammaticale, c’est marcher sur un chemin pavé d’embûches subtiles.

Désambiguïsation

Bien que le correcteur fasse déjà de la désambiguïsation à sa manière, brutalement, améliorer cet aspect ne serait pas du luxe pour la connaissance du contexte des erreurs. J’hésite encore sur la mise en œuvre. “Tokeniser”, pourquoi pas, mais ce n’est pas ma solution favorite. Utiliser le préprocesseur de texte pour créer un genre de carte signalétique, c’est pas mal, mais ça ressemble à de la bidouille. Employer des trucs et astuces, comme je le fais déjà maintenant, toujours via le préprocesseur de texte, ce n’est pas ce qu’il y a de plus commode, surtout pour l’intelligibilité de l’ensemble des règles. Je n’ai pas encore trouvé une solution simple et efficace. En rédigeant ce billet, une solution plaisante m’est venue. Ce sera un désambiguïsateur multi-passes sans tokenisation. Il fonctionnera en dressant un index de balises grâce des règles de désambiguïsation qui seront exécutées au commencement de chaque passe, avant même le préprocesseur de texte. Il suffira, lors de l’analyse lexicale, que le correcteur interroge en premier lieu cet index. Ce mécanisme devrait accroître grandement la capacité de reconnaissance des erreurs, car le désambiguïsateur diminuera les incertitudes.

Fiabilité des versions (tests unitaires)

Triste à dire, mais il n’y a à l’heure actuelle aucun test unitaire dans Grammalecte. Tout simplement parce que le correcteur est pour l’instant incapable de fonctionner hors de Writer. Les tests faits avant chaque publication se limitent à deux fichiers ODT que j’ouvre dans le traitement de texte : un qui référence les faux positifs éventuels, un autre qui liste des erreurs grammaticales à détecter. J’ouvre encore quelques autres fichiers pour voir si tout va bien. Mais ce n’est pas du tout pratique. Les tests unitaires accéléreraient beaucoup le développement, car les bugs et les régressions seraient détectés aussitôt, ce qui ne serait pas du luxe.

En finir avec la dépendance à Hunspell et à LibreOffice/OpenOffice

La raison pour laquelle Grammalecte est pour l’instant dépendant de LibreOffice/OpenOffice, c’est sa dépendance à Hunspell, le correcteur orthographique, qu’il interroge sans cesse pour connaître la nature grammaticale des mots.

Hunspell remplit sa tâche, mais les informations qu’il fournit sont présentées en vrac. Il faut traiter les données avant de pouvoir les exploiter. Quand vous demandez la nature grammaticale d’un mot, vous récupérez en fait toutes les étiquettes que le dictionnaire contient (et il y en a potentiellement pas mal). Il faut trier. Du coup, pour l’instant, je limite les données incluses dans le dictionnaire aux seules étiquettes grammaticales, afin d’éviter d’alourdir le boulot.

Plutôt que de recréer Hunspell en Python, il est préférable de créer un dictionnaire binaire indexable bâti sous la forme d’un gigantesque graphe de mots, facilement parcourable, ce qu’on peut appeler aussi un automate à états finis.

Un graphe de mots, ça ressemble à ça :
[image: Graphe de mots]

Pour savoir si un mot existe dans un graphe, on part de l’état initial et on suit les arcs représentés par les flèches, et si l’on parvient jusqu’à l’état final, le mot est considéré comme existant. Pour le correcteur, le graphe devra contenir tous les mots du français, et à la suite de chaque mot les informations grammaticales. Cette construction se fait à partir d’un simple fichier texte listant toutes les formes fléchies du français, leur lemme et les étiquettes informatives.

Les principales fonctions de cet automate seront de dire si un mot existe dans le lexique, donner son lemme (“aimer” est le lemme de “aime”), fournir ses étiquettes grammaticales, et éventuellement d’autres. Doté d’un module de suggestion, il peut même servir de correcteur orthographique.

Grammalecte existera bien sûr toujours comme extension pour Writer mais, grâce à cela, il pourra exister comme serveur autonome capable de fournir des corrections grammaticales à tout programme lui passant du texte à analyser, au format JSON. Chaque erreur contiendra les informations suivantes :

	position de l’erreur,

	type d’erreur (pour les applications qui auraient l’intelligence de souligner avec différentes couleurs),

	message explicatif,

	suggestion(s),

	[optionnellement] hyperlien vers une page explicative plus complète,

	identifiant de la règle détectant l’erreur (utile seulement pour le débogage).

Conversion du code en JavaScript pour l’extension Firefox/Thunderbird

Pour rappel, le but est bien d’avoir une extension qui peut fonctionner sans faire appel à un serveur local ou distant. Il faudra tout réimplémenter en JavaScript. Pour Firefox, je voudrais que le correcteur puisse aussi analyser le contenu d’une page web et pas seulement les zones d’édition de texte. Pour l’instant, Firefox, contrairement à LibreOffice et OpenOffice, ne possède pas (encore) d’API pour la grammaire, ce qui complique l’interfaçage avec les utilisateurs, mais ça ne semble pas insurmontable. À part ça, il n’a pas grand-chose à dire si ce n’est qu’il y a des épines et des ronces en perspective.

Autres considérations

Les autres langues ?

Bonne nouvelle ! Même si je n’ai pas l’intention de m’occuper des autres langues, ce qui sera fait pour le français sera également possible pour bien d’autres. L’une des raisons pour lesquelles Lightproof est peu employé, c’est l’absence de ressources lexicales. Lightproof utilise les dictionnaires pour Hunspell, dont bien peu peuvent servir à la correction grammaticale puisque seuls les dictionnaires français et hongrois sont grammaticalement étiquetés. Or, le compilateur de lexique en dictionnaire binaire indexable dont j’ai parlé ci-dessus pourra réutiliser tous les lexiques de LanguageTool. Autrement dit, toutes les langues qui disposent d’un lexique chez LanguageTool pourront utiliser le moteur de Grammalecte.

Et la gestion du dictionnaire ?

Le site qui gère le dictionnaire français a fait son temps. Il est encore utile et assez pratique, mais il pourrait être bien mieux, plus simple notamment. Même s’il n’est pas difficile de participer, il faut quand même un peu de temps pour comprendre la logique. Mais comprendre n’est même pas exigé, il suffit de proposer de nouveaux mots. Malheureusement ça rebute apparemment beaucoup de monde. Les utilisateurs veulent aller vite et ne voient les résultats de leur participation que des mois plus tard, quand une nouvelle version est publiée. Le site est pensé sur un mode cathédrale et non sur un mode bazar. Après des années d’utilisation, j’en vois les limites, et je pense qu’il aurait dû être conçu autrement. Le refonte du site ne fait pas partie de la campagne de financement participatif. Idéalement, j’aimerais avoir un jour le temps de tout réécrire en Python (avec un framework comme Flask) en utilisant un autre concept que celui d’aujourd’hui, permettant une plus grande personnalisation, une plus grande modularité, un contrôle plus simple. C’est un vaste chantier.

Pour pallier ce problème, je prévois de créer dans le correcteur de LibreOffice et de Firefox un assistant qui simplifiera toute la procédure.

Les correcteurs grammaticaux servent-ils à quelque chose ?

Certaines personnes, en général avec une forte estime de leurs connaissances en orthographe et en grammaire, pensent que les correcteurs grammaticaux sont tous mauvais et ne servent à rien, et surtout pas à eux. Cette opinion est en partie légitime et en partie fausse.

Les correcteurs informatiques, ne comprenant rien à ce que vous écrivez, ont bien sûr du mal à détecter les erreurs dans les phrases complexes et parfois même dans des contextes simples. Dans bien des cas, les connaissances en grammaire d’un utilisateur bien instruit lui permettront de trouver plus d’erreurs que le correcteur grammatical.

Néanmoins, ceux qui pensent que connaître la langue parfaitement suffit à ne jamais faillir se trompent, car nombre d’erreurs sont dues à l’inattention, à la fatigue, à des copier-coller mal ajustés, à des défauts de reconnaissance optique. Or, l’ordinateur ne relâche jamais son attention, son œil ne fatigue jamais et il examine même ce qui ne vous vient pas à l’esprit.

Par ailleurs, pour les personnes dont les connaissances sont lacunaires, il peut se révéler pédagogue. Si par exemple vous ne connaissez pas le participe passé du verbe “avoir” (“eu”, que beaucoup écrivent erronément “eut”) ou du verbe “lire” (“lu”, et non “lut”), le correcteur finira immanquablement par trouver des occasions de vous signaler vos erreurs, même s’il peut ne pas toujours les repérer dans les contextes complexes, car il les détectera dans les contextes simples (Erreurs détectées dans “j’ai eut”, “ils n’ont pas eut”, etc.).

Le mot de la fin

Merci de m’avoir lu jusqu’ici.

Il semble que l’orthographe et la grammaire françaises soient de plus en plus ignorées, même des personnes les plus instruites. C’est du moins ce que disent souvent des articles alarmistes. J’ignore si cela est vrai, mais ce que je lis sur le Web m’étonne parfois, tant les bases de la grammaire semblent parfois méconnues. Qu’on ne connaisse pas la conjugaison de tous les verbes, c’est compréhensible, mais confondre “ça” et “sa”, “ce” et “se”, “quand”, “quant” et “qu’en” semble signifier qu’il faudrait une remise à niveau pour pas mal de monde. Cela dit, ce n’est peut-être pas si étonnant si l’on songe que le Web a remis à l’écriture des personnes qui n’écrivaient plus rien depuis fort longtemps.

Si vous pensez que Grammalecte mérite de s’étendre hors de LibreOffice, si vous trouvez que la langue française est maltraitée et qu’il faudrait avoir un outil pour dénicher les erreurs sur le Web, si vous voulez voir des mots normalement rejetés intégrés dans le correcteur, c’est sur Ulule que ça se passe.

Aller plus loin

	
Site officiel
(3360 clics)

	
Campagne de financement participatif
(1236 clics)

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/577aa599e831728fe29d0f21c71435fe8dfc56c5e061cac44831c310.png
Mon soutient|

© Incohérence avec « Mon »: « soutient » st un verbe.

soutient : verbe (3e gr), présent, 3¢ pers. sing, [soutenir]

suis » Verbe, présent, e pers.sing, [étre]
Verbe @e gr), présent, 1re pers. sing, 2¢ pers.sing, [suivrel
impéreti, 2 pers. sing. [suivre]

Conjuguer

Conjuguer “suivre’... verbe Ge gr

EPUB/9c8c353c97ad7f877a62e8d53a6e0e95e6fdd862f9e2359c6564cfca.png
Je vient.

© Conjugsison erronée. Accord avec « Je . Le vrbe devrat éte a premiére personne du singuler.

Elles sont aveugle.
© Accord avec e sujet « Elles - « sveugle » devrat tre au Féminin plurel

aveugles
aveuglées

EPUB/242578773d4d011575ab2426528d8f88cd60ae4b27b4aadcc22a315e.png
0SORONPC =SOFo= 3
wi=>
MO0 @%\‘\\
“‘9""‘% = B S\
B \‘1'3'\35“‘@%~
1 / 7 ™

\' o
oo

EPUB/a55ff28f9d663306abb89241d6ed817b8ebef0c1ce3b09f018113cb8.png
<> GRAMMALECTE

EPUB/4ddee5e8a98fc5ff328065802d88362c2c88b64efab91cd14be92989.png
Grammalecte - Conjugueur

===

r~ Infinitif
ewe | 2
susilizire - intransitif [négation [pronominal [féminin
- . X errogatit temps composés
—Participes présent et passés— "ot [Bli=metneets
etant Impératif
Présent
soyons
soyez
~Subjonctif
Présent
je sois
tusois
ilsoit
nous soyons
vous soyez
is soient
Imparfait
Jefusse
tufusses
iifat
nous fussions
vous fussiez
s fussent
~Conditionnel
Présent
Jeserais
tuserais
s furent serait
Fuur Vousseres
Jeseral s seraient
tuseras
iisera
s seront
Ty —
e e
ittt

EPUB/7b19cb8d23b99acd8e81be9729898ae095bd6ed7d3fef7d326a4da4b.png
Campagr;gudre financement participatif

o BRAMMALECTE

CORRECTEUR GRAMMATICAL OPEN SOURCE

Grammalecte existe déja comme extension pour

[LibreOffice & % Openoffice

Elle inclut un conjugueur, un “lexicographe”,
un correcteur typographique automatisé

A présent,
Grammalecte voudrait étendre sa portée et devenir

une

EXTENSION (v

Firefox
& @ Thunderbird

& Chrome”

etun

SERVEUR

(c’est-a-dire

une application autonome

pouvant fournir des corrections
a tout logiciel

lui transmettant du texte).

Donnons a la langue francaise un outil

contre la prolifération des erreurxsur Internet
0pS

~ Siteweb :
de financement :

estune marque de a e 'Apache Software Foundation.
o sont des ma i est une marque de Google.

EPUB/9bfda102205c130a54dd6665c3ffd68b02fd8984a812a2597c900bef.png
Google “je mien fou" site-inuxrorg [a |

Web Images Vidéos Actualités Maps Plus~ Outils de recherche

Environ 2 220 résultats (0,48 secondes)

Y'en a marre de ce gros troll ! - LinuxFr.org

linuxir org/users/barmic/joumauxly-en-a-marre-de-ce-gros-troll =

14 nov. 2014 - § messages - § auteurs

Déja le karma, je m'en fou. Mais surtout parce quon est passé dune excellente
dépéche avec des commentaires plats (3 base de "super

EPUB/201e7afba49551ae56ed6c721b0c2d49fb579b4603b92c02f7775458.png
‘Grammalecte - Formateur de texte [Frangais]

ESpaces suimumeraiies
En début de paragaphe

Entre les mots.

En fin de paragraphe
Avantlespoints (), es virgules)
Alintérieurdesparenthéses
Alinérieur des grochets
Afintericurdes gullemels et -

Espaces manquantes

Espaces insécables

o [Clfines
Avecles guilemets <et> [fines
Avant % %o €S£¥°C

Alintérieur des nombres [fines.
Avantles unités de mesure

] Suppressions

e —

it i o
Sandard © Copsdetarte

(@ Signes typographiques
Apostrophe ()

Points de suspension (..

Tirets dincise:

) cadrstin () demi-cadrtin ()
Tirets en début de paragraphe:

cadratin () demi-cadrtin ()
Modife les guillemets drots (" et)

Points médians des unités (N-m, Q:m...)
Ligstures : cosur, ceu, meeurs,sceur..

(@ Divers
‘Ordinaux (15e, XXle...)
Etcten etc

TS memTS
i
[lettes soées G mi ¥ty [M

[T Restructuration [!]

Retour & a ligne = fin de paragraphe.
Enlever césures en fin de ligne/paragraphe
Fusionner les paragraphes contigus []

Appliquer

EPUB/imagessections62.png

