

Haproxy 1.6

Posté par David Carlier le 23 octobre 2015 à 12:17.
Édité par palm123, claudex, Nÿco, Nils Ratusznik, NeoX, Benoît Sibaud, bubar🦥 et ZeroHeure.
Modéré par NeoX.
Licence CC By‑SA.

Étiquettes :

	haproxy

	load-balancing

	admin

[image: Internet]

Haproxy est un serveur proxy et un répartiteur de charge pour les contraintes de haute-disponibilité. Écrit en C, il a la réputation d'être efficace, simple et rapide. Après 16 mois de développement la nouvelle branche 1.6 est la nouvelle stable, par conséquent une nouvelle branche 1.7 a été crée pour tout nouveau développement. De nombreux ajouts ont vu le jour depuis la version 1.5 et d'autres contributeurs ont rejoint le projet. Actuellement, Haproxy est utilisé par de nombreux sites et services web, tels que Github, Twitter, StackOverflow, Reddit, ainsi que Amazon Web Service.

[image: HAProxy]

Nouveautés

	Intégration de Lua.

	Capture slots.

	Nouvelles régles HTTP.

	Nouveaux converters.

	Détection d'appareils mobiles.

	Déclarations de variables.

	Traitement du corps d'une requête HTTP.

	Partage de connection HTTP.

	Lancement de scripts "health check".

Intégration de Lua

C'est clairement la plus importante nouveauté de cette release, elle apporte la possibilité d'étendre les possibilités de base d'Haproxy sans avoir à écrire des modules en C. Les niveaux où Lua peut intervenir :

	Action.

	Service.

	Sample / Fetch et converters.

Cela dit, cela requiert d'avoir installé Lua > 5.3.

Exemple utilisant le module lua MD5

haproxy.cfg:

 global
 ...
 lua-load content.lua
 ...

 frontend http-in
 ...
 mode http
 http-request use-service lua.content
 ...

content.lua :

 core.register_service("content", "http", function(applet)
 local md5 = require("md5")
 local content = '{"myjson":1}'
 local contentchksum = md5.sumhexa(content)

 applet:set_status(200)
 applet:add_header("Content-MD5", contentchksum)
 applet:add_header("Content-Type", "application/json")
 applet:start_response()
 applet:send(content)
 end)

Capture slots

C'est la possibilité de stocker une donnée en lui attribuant un identifiant comme suit

 frontend myfrontend
 ...
 declare capture request len 128
 http-request capture req.hdr(User-Agent) id 0
 ...
 backend mybackend
 ...
 http-response set-header X-User-Agent %[capture.req.hdr(0)]

Nouveaux converters

Trop nombreux à énumérer, une liste complète est présentée ici.

Détection d'appareil mobiles

Haproxy supporte désormais la détection d'appareils mobiles via deux bibliothèques tierces, 51 degrees ou DeviceAtlas via l'User-Agent, ou tous les entêtes HTTP via un converter ou un sample / fetch.

Exemple de configuration

global
 #### 51 degrees

 51degrees-data-file /etc/51Degrees-Premium.dat
 51degrees-property-name-list IsMobile DeviceType
 51degrees-property-separator ,
 51degrees-cache-size 4096

 #### DeviceAtlas

 deviceatlas-json-file /etc/deviceatlas.json
 deviceatlas-property-separator ,

 frontend http-in
 bind *:8881
 default mybackend

 #### 51 degrees
 #### with sample / fetch
 http-request set-header X-51D-IsMobileDeviceType %[51d.all(IsMobile,DeviceType)]
 #### with converter
 http-request set-header X-51D-IsMobileDeviceType %[req.fhdr(User-Agent),51d.single(IsMobile,DeviceType)]

 #### DeviceAtlas
 #### with sample / fetch
 http-request set-header X-DeviceAtlas-Data %[da-csv-fetch(primaryHardwareType,osName,osVersion,browserName,browserVersion)]
 #### with converter
 http-request set-header X-DeviceAtlas-Data %[req.fhdr(User-Agent),da-csv-conv(primaryHardwareType,osName,osVersion,browserName,browserVersion)]

Déclaration de variables

Il existe maintenant la possibilite de déclarer (et d'utiliser) une variable comme suit :

 ...
 http-request set-var(txn.whereitcomesfrom) req.hdr(Referer)
 ...
 http-response set-header X-WhereitComesFrom %[var(txn.whereitcomesfrom)]

Traitement du corps d'une requête HTTP

Via la nouvelle option http-buffer-request (niveau frontend ou backend), il est maintenant possible d'attendre que la requête soit complète avant tout traitement ce qui permet par exemple de traiter en fonction du corps de la requête.

Partage de connexion HTTP

Via le nouveau mot-clé http-reuse, il est possible pour plusieurs clients de partager la même connection pour un serveur. Plusieurs politiques sont possibles : never, safe, aggressive, always.

Lancement de scripts « health check »

Via le mot clé external-check, on peut vérifier l'état avec un script externe.

Exemple

 global
 external-check

 backend mybackend
 external-check command <my command>

Aller plus loin

	
Site officiel
(872 clics)

	
Brève liste des changements
(217 clics)

	
Manuel d'utilisation de Cyril Bonté
(230 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/742175ab318d8434aaeb3f48c475f438d097f18676292e808cc0707e.png

EPUB/imagessections22.png

