

Hotspot, à la recherche du point chaud…

Posté par Pinaraf le 14 avril 2021 à 15:49.
Édité par Nils Ratusznik, Ysabeau 🧶, palm123 et Julien Jorge.
Modéré par NeoX.
Licence CC By‑SA.

Étiquettes :

	performance

	linux

	libreoffice

	debian

	postgresql

	optimisation

	calligra

[image: Bureautique]

Depuis maintenant quelques semaines, j’ai repris les contributions au projet Calligra, et plus particulièrement au traitement de texte (cf ce journal pour plus d’informations). Du coup, quand sur la liste de courriel des développeurs un comparatif a été envoyé, comparant LibreOffice et Calligra sur le temps de chargement d’un document volumineux (800+ pages, table des matières de 60+ pages), et révélant un sévère désavantage pour Calligra, mon sang ne fit qu’un tour : un facteur 4 dans le temps de chargement n’est pas acceptable, même s’il s’explique par l’absence de travail d’optimisation sur ce point…

Partons donc à la recherche de ces lenteurs, et profitons-en pour parler des méthodes d’analyse des performances d’un programme sous Linux !

Sommaire

	1) dans des temps anciens, callgrind…

	
2) Performance Counters for Linux, perf, la révolution…
	2.a) Petit exemple

	2.b) perf top pour voir ce que fait notre système

	2.c) perf record pour analyser un programme

	3) hotspot, rendons ça plus visuel…

1) dans des temps anciens, callgrind…

Valgrind est un outil bien connu des développeurs C/C++ notamment. Il est connu comme étant un excellent outil pour détecter et analyser les problèmes mémoire, qu’il s’agisse de fuites ou d’utilisation de pointeurs libérés… Mais c’est une vraie collection d’outils, avec également celui qui fut un grand allié dans la recherche des problèmes de performance, callgrind.

Callgrind fonctionne en remplaçant le programme de chargement du binaire par le sien, et en faisant une analyse dynamique du code au fur et à mesure de son exécution. Cette analyse est complète (il ne s’agit pas d’instantanés à une fréquence donnée) mais a un coût colossal : un programme dans callgrind peut facilement être dix fois plus lent qu’en dehors de callgrind. Sur un programme complexe, on procède souvent à une analyse réduite avec un déclenchement retardé de callgrind, puis en l’interrompant quand l’événement que l’on souhaite analyser est passé. L’illustration en est donnée sur cet article d’analyse de plasma avec callgrind.

Heureusement, ce temps est désormais révolu et d’autres outils sont disponibles maintenant, bien plus flexibles. Celui que je vais utiliser est désormais un indispensable dans ma boite à outil, qu’il s’agisse d’administration système, de travail de DBA ou de développement : perf.

2) Performance Counters for Linux, perf, la révolution…

Bon la révolution ne date pas d’hier (2009 dans le noyau, 2010 dans RHEL, 2011 dans Debian Squeeze…), mais finalement on en a peu parlé sur DLFP, et ce n’est donc pas si connu que ça… Ou l’inverse, je ne sais plus…

perf utilise les compteurs matériel, des points de traçage dans le noyau ou dans les applications afin de collecter des événements. Qu’est-ce qu’un événement, me direz-vous ? Je suis heureux que vous me posiez cette question : la commande perf list en liste plus de 300 chez moi… Ils se répartissent en deux catégories selon l’origine, logicielle ou matérielle. Par exemple chaque changement de tâche par l’ordonnanceur du noyau va être un événement logiciel. Les événements matériels correspondent quant à eux aux données de la PMU (Performance Monitoring Unit), une partie du processeur qui va surveiller des événements au niveau micro-architectural comme le nombre de cycles écoulés, les succès/échecs sur le cache…

Bien évidemment, on ne peut pas enregistrer chaque occurrence de ces événements : à chaque seconde, des milliards de cycles s’écoulent, et traiter ces événements déclencherait à nouveau un nombre conséquent d’événements… Le processeur maintient donc des compteurs d’événements, que le noyau va consulter.

perf est donc la face visible de tout ce travail, et permet donc pendant une période et à une fréquence donnée d’enregistrer et visualiser le nombre d’occurrences de ces événements.

2.a) Petit exemple

Prenons un cas simple, echo 'bonjour monde' :

% perf stat /bin/echo 'bonjour monde'
bonjour monde

 Performance counter stats for '/bin/echo bonjour monde':

 0.42 msec task-clock:u # 0.556 CPUs utilized
 0 context-switches:u # 0.000 K/sec
 0 cpu-migrations:u # 0.000 K/sec
 62 page-faults:u # 0.146 M/sec
 205,471 cycles:u # 0.485 GHz
 14,061 stalled-cycles-frontend:u # 6.84% frontend cycles idle
 45,629 stalled-cycles-backend:u # 22.21% backend cycles idle
 219,967 instructions:u # 1.07 insn per cycle
 # 0.21 stalled cycles per insn
 49,000 branches:u # 115.556 M/sec
 <not counted> branch-misses:u (0.00%)

 0.000763131 seconds time elapsed

 0.000819000 seconds user
 0.000000000 seconds sys

L’exécution de cette commande simple a duré 0,76ms, 205 000 cycles processeurs, 220 000 instructions, avec une consommation de 0,42ms de CPU.

Pour comparaison, avec sleep 1 :

% perf stat sleep 1

 Performance counter stats for 'sleep 1':

 0.45 msec task-clock:u # 0.000 CPUs utilized
 0 context-switches:u # 0.000 K/sec
 0 cpu-migrations:u # 0.000 K/sec
 62 page-faults:u # 0.137 M/sec
 249,795 cycles:u # 0.554 GHz
 21,583 stalled-cycles-frontend:u # 8.64% frontend cycles idle
 60,183 stalled-cycles-backend:u # 24.09% backend cycles idle
 221,601 instructions:u # 0.89 insn per cycle
 # 0.27 stalled cycles per insn
 49,186 branches:u # 109.046 M/sec
 <not counted> branch-misses:u (0.00%)

 1.001224745 seconds time elapsed

 0.000899000 seconds user
 0.000000000 seconds sys

On note que le task-clock reste très faible puisqu’il s’agit du temps processeur consommé, et sleep ne fait pas une attente active où il consommerait inutilement du processeur.

2.b) perf top pour voir ce que fait notre système

perf top permet d’avoir une vue instantanée de tout le système, noyau inclus. Lors de cette capture, un btrfs scrub est en cours sur deux disques en LUKS.

[image: Perf top avec un btrfs scrub en arrière-plan]

Vous notez en haut de l’interface que l’événement capturé est 'cycles' (le nombre de cycles processeur consommés), à une fréquence de 4 kHz (4 000 captures par seconde, pour les moins scientifiques d’entre nous). Cela montre le fonctionnement de perf qui réalise un échantillonnage du système.

Dans cette interface, on peut également aller dans chaque fonction et annoter les fonctions pour voir exactement où le CPU est consommé. Quand on ne dispose pas des symboles de debug (mon principal reproche contre Archlinux), le code assembleur sera affiché.

[image: Détail du temps passé sur une fonction dans perf top]

Cette commande est utilisable également sur un serveur en production, et peut donc aider dans des cas sensibles d’analyse de performances : elle n’a pas d’impact sur le système quand il tourne, et permet de creuser très facilement sur les fonctions les plus gourmandes en CPU, qu’il s’agisse de fonctions dans l’espace utilisateur ou dans l’espace noyau. Grâce à cet outil, un collègue et moi-même avons su identifier (puis corriger avec les outils présentés ensuite) un problème de performance sur PostgreSQL où la réplication logique provoquait une forte consommation de CPU en système.

2.c) perf record pour analyser un programme

La commande perf record est, dans le cas qui nous intéresse ici, la plus utile. Elle permet, pour un ensemble de processus donnés (ou l’ensemble du système) d’enregistrer un fichier perf.data qui va contenir un ensemble d’événements. Nous pourrons ensuite utiliser des outils comme perf report pour disposer de la même interface que perf top, mais sur un état figé. Quand on dispose d’un élément reproductible (ici, ouvrir et afficher le fichier OpenDocument-v1.2-part1.odt), on peut facilement modifier l’application pour comparer l’évolution.

Un paramètre assez important à perf record est --call-graph qui permet d’enregistrer les piles d’appel à chaque événement. Ainsi, au lieu de voir que l’on a passé 50 % du temps dans une fonction foo(), on peut découvrir qu’en fait on a passé 45 % du temps dans un appel de foo() par bar(), et 5% du temps dans des appels divers à foo(). Plusieurs valeurs peuvent être passées à --call-graph, pour spécifier la méthode de capture des piles d’appel, avec un choix entre fp (utilisation du 'frame pointer' qui doit être mis par le compilateur), dwarf (utilisation des données de debug du programme) et lbr (utilisation des registres LBR, disponibles uniquement sur les processeurs Intel récents). Dans mon cas, j’utilise dwarf qui m’a donné les meilleurs résultats. Un autre paramètre optionnel est -F pour spécifier la fréquence d’échantillonnage. Sur des périodes de captures courtes, ce paramètre peut être utile pour obtenir des traces plus utilisables.

Lançons ça sur Calligra Words :

% perf record --call-graph dwarf ./words/app/calligrawords ../OpenDocument-v1.2-part1.odt

[… sortie diverse de debug de différents composants de calligra …]

[perf record: Woken up 2749 times to write data]
Warning:
Processed 93565 events and lost 21 chunks!

Check IO/CPU overload!

[perf record: Captured and wrote 691.125 MB perf.data (85798 samples)]

691 MB, c’est costaud. D’ailleurs, un certain nombre d’événements n’ont pas pu être capturés. Ajouter les paramètres --aio -z règlent ce souci en compressant la sortie et en faisant des IOs asynchrones.

Avec perf report, on peut explorer l’enregistrement, ce qui donne une interface (et des fonctionnalités) proches de perf top :

[image: Aperçu de l'enregistrement de Calligra dans perf report]

Néanmoins, sur un programme aussi complexe qu’un traitement de texte, cet affichage n’est pas le plus adapté… Heureusement…

3) hotspot, rendons ça plus visuel…

KDAB est une société de service en logiciels, spécialisée sur Qt, qui contribue au libre : plusieurs de ses salariés sont d’éminents développeurs KDE, elle a envoyé de nombreux patchs sur Qt, ouvert différents outils autour de Qt…

Et l’un de ses derniers nés est hotspot, je cite, « L’interface à Linux perf pour l’analyse de performance », disponible en licence GPL ou commerciale.

L’outil est extrêmement simple à prendre en main : on ouvre dans l’interface le fichier perf.data, et après quelques secondes, l’interface (très complète) apparaît.

[image: Aperçu de l'enregistrement de Calligra dans hotspot]

La visualisation la plus intéressante est le 'Flame Graph'. Grâce à lui, on peut en quelques instants voir où le temps s’est écoulé, et donc en déduire les endroits à optimiser.

[image: Flame-graph de l'enregistrement de Calligra dans hotspot]

On trouve donc facilement le point chaud, il n'y a « plus qu’à » le corriger… Bon, « le plus qu’à » a pris plusieurs jours, plusieurs patchs, des versions incorrectes, différents atermoiements… Les plus curieux peuvent aller regarder sur cette 'merge-request' pour les correctifs de cette fonction, sachant que d’autres correctifs ont été intégrés entre-temps pour d’autres points 'tièdes' repérés avec hotspot également.

Une fois ce point chaud corrigé, un second point chaud était assez apparent : l’ajout de texte dans un QTextDocument. L’analyse a permis de révéler un algorithme en O(n) lors de l’ajout de textes sur QTextDocument en fonction du nombre de curseurs qu’on maintient sur le document. Or, dans Calligra, chaque annotation et chaque marque-page dans le document est représenté avec un curseur, et il y en a plusieurs milliers. Là aussi, les plus curieux peuvent aller voir le bug Qt correspondant que j’espère corriger dans les prochains mois… Hé oui, contribuer à un logiciel peut parfois amener à en corriger beaucoup plus…

Pour information, une fois les problèmes corrigés, je suis arrivé à ce niveau de performances :

[image: Flame-graph de l'enregistrement de Calligra dans hotspot après optimisation]

On voit que le temps requis pour ouvrir le fichier est passé de 20 secondes à 8 secondes, et hotspot va continuer de m’aider à trouver les endroits restant à optimiser.

Attention tout de même : le principal inconvénient d’un tel outil est sa simplicité d’utilisation. C’est assez « enivrant » et l’on se prend vite au jeu de gratter des cycles CPU à droite et à gauche, quitte à délaisser le développement de fonctionnalités ou la correction de bugs…

J’espère en tout cas que cet article vous permettra de trouver d’autres optimisations à faire sur les programmes que vous développez ou utilisez.

Aller plus loin

	
Calligra
(172 clics)

	
Hotspot (Github)
(149 clics)

	
Linux perf
(80 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/862c8bb79c1a3ea7ca2eb02c9617245d5dd877028930268e0d00a774.png
75%
26%
32%
31%
27%
.96%
.81%
.53%
.3u%
.33%
.83%
27%
27%
26%
97%
88%
79%
78%
4%
67%
63%
52%
52%
50%
u6%
ul1%
ul1%
ue%
38%
3u%
29%
27%
26%
26%
25%
25%
2u%
2u%
23%

P PP PP PP OO PP PPEOOEEEOOOOE® NN NN WWE 0 o

or a higher level overview, try: perf top --sort comm,dso

[aesni_intel]
[dm_crypt]
[aesni_intel]
[kernel]
[aesni_intel]
[kernel]
[glue_helper]
[aesni_intel]
[crypto_simd]
[kernel]
[kernel]
perf

perf

perf

[btrfs]
[kernel]
[kernel]
[kernel]
[dm_crypt]
Libc-2.33.s0
perf

[kernell
perf

[kernel]
Libc-2.33.50
Libc-2.33.50
[kernel]
[dm_crypt]
[kernel]
[glue_helper]
1d-2.33.s0
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
perf

[kernel]
[kernel]

_dectl
[k] crypt_convert.constprop.0
[k] aesni_xts_crypt8
[k] kernel_fpu_begin_mask
[K] aesni_xts_dec8
[k] _memset
[k] glue_xts_req_128bit
[k] xts_decrypt
[k] simd_skcipher_decrypt
[k] _x86_indirect_thunk_rax
[k] clear_page_rep
1 rb_next
[.] hpp_sort_overhead

1 hist_entry_sort
[k] scrub_checksun_data
[k] skcipher_walk_next
[k] __x86_indirect_thunk_r9
[k] _nencpy
[k] iv_of_dnreq
[.] _int_malloc

1 perf_hpp__is_dynamic_entry
[k] kfree
[.] output_resort
[k] crypto_stats_skcipher_decrypt
.] _memmove_avx_unaligned_erms
1 _int_free
[k] psi_group_change
[k] crypt_iv_plainél_gen
[k] get_page_from_freelist
[k] _glue_xts_req_128bit
[.] do_lookup_x
[k] native_sched_clock
[k] copy_user_generic_string
[k] _free_one_page
[k] skcipher_walk_virt
[k] free_pcppages_bulk
[.] _rb_hierarchy_next
[k] menu_select
[k] copy_page

EPUB/74ef910c9d6026fbac24d0ffe639871a843769de2a3513a434f828fb.png
- 9256 0.00% calligrawords libkonain.s0.17.0.0 [.] KoDocument ::Private:
::openLocalFile
- 92.0u% KoDocunent :: Private :: openFile
- KoDocurent :: openFile
+ 57.63% KoUpdater ::setProgress
- 30.40% KoDocument :: LoadNativeFormat
- 30.40% KoDocument :: LoadNativeFormatFronStore
- 30.3% KoDocument :: LoadNativeFormatFronStoreInternal
- 34.29% KoDocument :: LloadOasisFronStore
- 31.91% KWDocument :: LoadOdf
- 31.91% Kil0dfLoader :: load
- 27.08% KoTextLoader :: LoadBody
- 14.36% KoTextLoader :: loadParagraph
- 13.05% KoTextLoader:: loadSpan
- 17.05% KoTextLoader :: loadText
- 6.51% QTextCursor:: insertText
- 6.46% QTextCursor::insertText
- 6.39% QTextDocumentPrivate::insert
- 6.27% QTextDocumentPrivate :: adjustDocunentChangesAnd

3.64% QTextCursorPrivate
0.81% QHashData:: nextNode
- 3.82% KoTextLoader::loadSpan
oadText
1nsertText

djustPosition

+ U.30% KoUpdater:: setProgress
- 1.77% KoOdfReadStore :: loadAndParse
+ 1.75% KoOdfReadStore :: LoadAndParse
+ 0.62% KoOdfReadStore :: ~KoOdfReadStore
+ 0.51% KoDocument :: completed

::openLocalFile

ICursors

+ 92.36% 0.00% calligrawords libkomain.so.17.0.0 [.1 openUrlInternal

+ 92.33% 0.00% calligrawords libkomain.so.17.0.0 [.1 ;:openurl

+ 92.32% 0.00% calligrawords libkomain.so.17.0.0 [

+ 92.06% 0.00% calligrawords libkomain.so.17.0.0 [.] KoMainiindow:: openDocunentInternal
+ 92.17% 0.00% calligrawords libkomain.s0.17.0.0 [.] KoDocumen

+ 92.07% 0.00% calligrawords libkomain.s0.17.0.0 [.] KoDocumen: ::openFile

+ 91.93% 0.00% calligrawords libkomain.so.17.0.0 [-] KoMainltindow:: openDocument

+ 91.57% 0.00% calligrawords libkdeinit5_calligrawords.so [.] kdemain

+ 91.22% 0.00% calligrawords calligrawords [.] main

+ 91.19% 0.00% calligrawords libc-2.33.s0 [.] _libc_start_main

+ 99.66% 0.00% calligrawords calligrawords [.] _start

+ 63.27% 0.00% calligrawords libQt5Core.so.5.15.2 [.] 0x00007fa8uclc69d5

+ 62.71% 0.01% calligrawords libQtSCore.so.5.15.2 [.] QCoreApplication::notifyInternal2
+ 62.70% 0.00% calligrawords libkomain.so.17.0.0 [.] KoApplication::notify

+ 62.69% 0.00% calligrawords libQtSWidgets.so.5.15.2 [.] QApplicationPrivate::notify_helper
+ 62.51% 0.00% calligrawords libQtSCore.so.5.15.2 [.] QEventDispatcherGlib::processEvents
4+ 62.51% 0.00% calligrawords libglib-2.0.50.0.6800.1 [.] g_main_context_iteration

4+ 62.51% 0.00% calligrawords libglib-2.0.50.0.6800.1 [.] g_main_context_dispatch

+ 62.51% 0.00% calligrawords libglib-2.0.50.0.6800.1 [.] 0x00007fa8Ua5aobss

+ 62.39% 0.00% calligrawords libQtSCore.so.5.15.2 [.] 0x00007fa8uclesb63

+ 62.39% 0.00% calligrawords libQtSCore.so.5.15.2 [.] QCoreApplicationPrivate:

+ 62.30% 0.00% calligrawords libQt5Core.so.5.15.2 [

:sendPostedEvents

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/1546b962406bb6fef6e62a3574b6f81cdf2e8d3f8ee7b52094f3d465.png
Percent
Disassenbly of section .text:
0000000000068300 <_aesni_dect>:
_aesni_dect():

14.41 movaps (%rdi),%xmm2
14.89 ov %rdi, %r10

14.76 pxor Sxmn2, xmne
14.85 pxor s5xmn2, Sxmnt

0.35 por Sxmn2, xmns

0.36 pxor X2, X6,

0.31 add $0x30,%r10

0.78 cmp $0x18, %r9d

0.36 L jb

0.36 lea 0x20(%r16), %r10
0.33 L je 5c

0.32 add $0x20,%r10

0.69 movaps -0x60(%r10) ,%xmn2
0.37 aesdec %xmm2, %xmn@

0.34 aesdec %xmm2, %xmnt

0.68 aesdec %xmm2,%xmn5

0.73 aesdec %xmm2,%xmn6

0.35 movaps —0x50(%rl) ,%xmn2
0.32 aesdec %xmm2, %xmn®

0.70 aesdec %xmm2, %xmnd

0.73 aesdec %xmm2,%xmn5

0.38 aesdec %xmm2, %xmn6

0.49 | 5c: movaps —-OxWO(%rle),%xmm2
0.73 aesdec %xmm2, %xmnd

0.77 aesdec %xmm2, %xmnd

0.40 aesdec %xmm2,%xmn5

0.34 aesdec %xmm2,%xmn6

0.72 movaps -0x30(%rl0) ,%xmn2
0.72 aesdec %xmm2, %xmn@

0.32 aesdec fxmm2, %xmnt

0.37 aesdec %xmm2,%xmn5

0.34 aesdec %xmm2,%xmn6

Bress 'h' for help on key bindings

EPUB/6485791f5ac349628f1f80fc50bdac700ff8f40c976ff136d55210d0.png
] perf.data - Hotspot [

File Settings View Window Help

Lost 2,107 events. Lost 21 chunks. - Check I0/CPU overload!

Summary @ Bottom Up @ Top Down @ Flame Graph € Caller / Callee @

< > |qgdesu | [Bottom-Up View [] Collapse Recursion | CostThreshold: 0.10% | | Search

KoText..
ToCGe...

ToCGen... QHashDat...

ToCGen... KoTextRang.. |QTextCursor: :doc QHash<KoTe...

Index6... KoTextRange: :document () const KoText..| | |Qset<KoTextRa.

KoTextD.. KoTextRangeManager : : textRangesChangingwithin (QTextDocument const*, int, int, :

KoTextD.. KoTextDocumentLayout : : positionAnchorTextRanges (int, int, QTextDocument const*)

qtPrivat KoTextLayoutArea: : layoutBlock (FrameIterator+)

void Qt.. KoTextLayoutArea: : layout (FrameIterator*)

qtPrivat KoTextLayoutRootArea: : layoutRoot (FrameIterator+)

Qobject.. KoTextDocumentLayout : :doLayout ()

QApplic.. KoTextDocumentLayout : : Layout ()

KoAppli.. KoTextDocumentLayout : : executeScheduledLayout ()

QCoreA.. QtPrivate: :FunctorCall<qtPrivate::IndexesList<>, QtPrivate::List<>, void, void (KoTextDocumentLayout::*)()>::call(vo:
QCoreA.. void QtPrivate::FunctionPointer<void (KoTextDocumentLayout::*)()>::call<QtPrivate::List<>, void>(void (KoTextDocumen:
27 [Libg QtPrivate::QSlotobject<void (KoTextDocumentLayout::*)(), QtPrivate::List<>, void>::impl(int, QtPrivate::QSlotObjects:
g_main . Qobject: :event (QEvent*)

27 [libg QApplicationPrivate: :notify helper(Qobject®, QEvent*)

KoApplication::notify(Qobject*, QEvent*)
QCoreApplication: :notifyInternal2(Qobject*, QEvent)

KoProgr.. QCoreApplicationPrivate: :sendPostedEvents(Qobject*, int, QThreadbata*)
QtPrivat 27 [libQt5Core.s0.5.15.2]
void Qt.. g_main_context_dispatch
qQtPrivat 77 [Llibglib-2.6.50.0.6800.1]
QText.. | [QText.. 27 [libq g_main_context_iteration
QTextDocum.. KoUpda... QEventDispatcherGlib: :processEvents (QFlags<QEventLoop: :ProcessEventsFlag>)

QTextbocum.. KoUpda... KoProgressUpdater: :update ()

QTextCursor: qQtPrivat QtPrivate: :FunctorCall<QtPrivate::IndexesList<>, QtPrivate::List<>, void, void (KoProgressUpdater::*)()>::call(void
QTextCursor: void Qt.. void QtPrivate::FunctionPointer<void (KoProgressUpdater::*)()>::call<QtPrivate::List<>, void>(void (KoProgressUpdatei
KoTextL.. KoText..|KoTextLoader: qtPrivat qtPrivate::QSlotobject<void (KoProgressUpdater::*)(), QtPrivate::List<>, void>::impl(int, QtPrivate::QslotobjectBase’
KoTextLo.. | [KoTextLoader::loadSpan (Ko: 77 [Libg 22 [Libt5Core.s0.5.15.2]
KoText..|KoTextLoa.. [KoTextLoader : : LoadParagraph(KoUpda. KoUpdaterPrivate: : sigupdated ()
KoTextLoader: : LoadBody (KoXnlElement const&, QTextCurso||KoUpda. KoUpdaterPrivate: : setProgress (int)
KiodfLoader : : Load (Ko0dfReadS tore&) QtPrivate: :FunctorCall<qtPrivate::IndexesList<>, QtPrivate::List<int>, void, void (KoUpdaterPrivate::*)(int)>::call

KWbocumen
KoDocument: : Load0asisFromstore (Kostore*) QtPrivate: :Qslotobject<void (KopdaterPrivate:
:loadNativeFornatFromStoreInternal (KoStore*) 22 [libot5Core.50.5.15.2]
ToadNativeFormatFronStore(QString consts) KoUpdater: : sigProgress (int)

ToadNativeFormat (QString consta) KoUpdater: : setProgress (int)

:openFile()

1oadodf (Ko0dfReadStores) void QtPrivate::FunctionPointer<void (KoUpdaterPrivate::*)(int)>::call<QtPrivate::List<int>, void>(void (KoUpdaterpr:
*)(int), QtPrivate::List<int>, void>::impl(int, QtPrivate::QSlotObjec

KoDocument :

KoDocumen’
KoDocumen’
KoDocument :

3.473E+10 (39.1%) aggregated sample costs in KoTextDocumentLayout::positionAnchorTextRanges(int, int, QTextDocument const*) (libkotextlayout.50.17.0.0) and below.

Time Line

W | search Event Source: | cyclesu v
Events

Source v
0s 1s 2s 3s as 5s 65 7s 8s 9s 105 1s 125 135 145 155 165 175 185 195 20s 21s 225

calligrawo:sh...
calligridisks3...
calligridisks2...
calligridisks1...
calligridiskso...
calligrawo:cs...
QDBusConn... |
QxcbEventq... |
calligrawords...

cPUS
cPU#23
cPU #22
cPU#21
CPU #20
CPU#19
CPU#18

EPUB/747b46e1d3e4dc0f665b927d9b6b31f59a7520fb53ac8525424da633.png
ar perf.data - Hotspot]
File Settings View Window Help

Summary @ ‘ Bottom Up @ ‘ Top Down @ Flame Graph @ | Caller / Callee €

<|[> ‘cycles:u V‘DBoncmrUpwew (] collapse Recursion | Cost Threshold: 0.10% | | search

==

void QtP

QtPrivat

Qobject KoTextDocumentLayout : : doLayout ()

[KoAppli...| KoTextDocumentLayout: : executeScheduledLayout ()

E——————
|

::FunctionPointer<void (KoTextDocumentLay:
:Qslotobject<void (KoTextDocumentLayout: :*) ()
vent (QEvent*)

|| atprivat [parse.. [[] ?? [libot5Core.so.5.15.2]

| [void qtP| parseEL. g_main_context_dispatch TextShape: :waitunt

void QtPrivate::Fu | |
QtPrivate: : FunctorCall<QtPrivat
?? [libQt5Core.so.

| KoselectionPrivate
KoSelectionPrivate ||

Kobocunent: oadativeFormatronstoreinternal (Kostores) |77 [Libatscore.50.5.15.2]
© | KoDocumen: adNativeFormatFromStore(QString const&) KoUpdater: : sigProgress (int)
| Kabocument: loadltiveformat Gstring constt) KUpdatersssecProgress int)

[KoDocument: : openFile()

|

|

| - —77 [Libgtscore. so.5.1
| I, o _c:in_context_dispat
|
1

e e 0 a main context iterat |

2.545E+10 (72%) aggregated sample costs in KoDocument::Private::openFile() (libkomain.so.17.0.0) and below.

Time Line
¥ | search Event Source: ‘cycles:u v|
Events
Source v

00s 05s 10s 15s 20s 25s 30s 35s 40s 45s 50s 555 60s 655 70s 75s 80s 85s 90s 95s 100s 105s 11.0s 1155

aalligrawo:cs...
QDBusConn... H [[
QXchEventQ...

St I U U T T D — |

|

EPUB/e13e48b2c6adf220875dda410fbc88c4217caa1b6cd0c7daf5b915a6.png
File Settings View Window Help

perf.data - Hotspot

Lost 2,107 events. Lost 21 chunks. - Check I0/CPU overload!

Summary € Bottom Up €@ Top Down @ Flame Graph @ Caller / Callee @

Failed to parse kernel symbol mapping file "//proc/kalisyms”: Mapping is empty.
Module "libKFSlconThemes.50.5.80.0" is missing 33 of 49 debug symbols
Module "libKFSSonnetCore.50.5.80.0" is missing 1 of 10 debug symbols.

Module "libKFSConfigWidgets.s0.5.80.0 is missing 37 of 52 debug symbols.
Module "libKFSGuiAddons.s0.5.80.0" is missing 17 of 20 debug symbols
Module "libm-2.33.50" is missing 27 of 30 debug symbols.

Module "libqgif.s0" is missing 9 of 9 debug symbols.

Parser Errors

Summary

Command: perf record --call-graph dwarf ./words/app/calligrawords ../OpenDocument-v1.2-part1.odt

RunTime: 225595
Processes: 1
Threads: 43
Total Samples: 85798 (3.803KHz)

cycles:u: 8.883E+10 (8.58E+04 samples, 100% of total, 3.803KHz)
LostEvents: 2107
Lost Chunks: 21

Symbol

QTextCursor::document() const
KoTextRangeManager::textRangesChangingWithin(QTextDocument const*, int, int, int, int) const

QTextCursorPrivate::
QHashData:nextNode(QHashData::Node*)
KoTextRange::

djustPosition(int, int, QTextundoComman

|_func() const

Host Name: peanuts2
Linux Kernel Version: 5.11.6-arch1-1

Perf Version: 5.11.gf40ddce88593

CPU Description: AMD Ryzen 9 3900XT 12-Core Processor
cPUID: AuthenticAMD,23,113,0

Time Line

¥ |search

Source v

Processes
- calligrawords (#51..
KoResourceL...
KoResourceL...
KoResourceL...
SpaceNaviga..

QThread (#5...

Top Hotspots

System Information

9s

105

Events

1s

125

Event Source: | cyclesiu v

Binary cyclesuu incl)
libQt5Gui.s0.5.15.2 10.5%
libkotext.s0.17.0.0 9.59%
libQt5Gui.s0.5.15.2 9.04%
libQt5Core.s0.5.15.2 8.49%
libkotext.s0.17.0.0 7.88%

Event Source: | cyclesiu v

13s 14s 15s 16s 17s 18s 19s 20s 2is 225

i

Thread (pool...

Thread (pool...

Thread (pool...

Thread (pool...

aalligrashio?...

calligrasshios...

EPUB/imagessections62.png

