

Inishell: générateur d'interfaces graphiques

Posté par Mathias Bavay (site web personnel) le 31 janvier 2022 à 22:15.
Édité par palm123 et Benoît Sibaud.
Modéré par Pierre Jarillon.
Licence CC By‑SA.

Étiquettes :

	gui

	ini

	qt

[image: Science]

Inishell est un générateur d’interfaces graphiques sous licence GPLv3 pour la configuration de logiciels utilisant des fichiers de configuration au format INI, écrit en C++ / Qt.

Sommaire

	Pourquoi?

	
Approche
	Conclusion

Pourquoi?

Nous avons développé une première version il y a presque dix ans de cela pour la configuration de nos modèles numériques du manteau neigeux (eux aussi en GPL ou LGPL version 3). En effet, l’une des difficultés principales des utilisateurs de modèles numériques scientifique est le choix des options de configuration qui peut avoir un impact très important sur leurs performances. Ces modèles requièrent un très grand nombre de paramètres de configuration (plus de 350 paramètres pour notre modèle Snowpack et son pré-processeur MeteoIO) qui doivent être choisis en toute connaissance de cause. Ceci se traduit directement par un grand nombre de demandes d’aide nous parvenant, leur traitement représentant de l’ordre de 75% d’un temps plein alors que notre équipe de développement atteint au maximum trois temps pleins.

Évidement, l’idéal serait que les utilisateurs lisent la documentation détaillée que nous fournissons avec nos modèles. Ce n’est malheureusement en général pas le cas, et la complexité de configuration des modèles numériques signifie que même des utilisateurs habituels vont générer des configurations moins performantes qu’attendu. La solution réside dans l’élaboration d’une interface graphique, afin d’accompagner les utilisateurs dans la configuration du modèle, de leur fournir des liens directs vers les pages de documentation et d’offrir une vue d’ensemble des fonctionnalités et capacités du modèle.

Malheureusement, créer et maintenir une interface graphique pour un très grand nombre d’options de configuration (qui plus est pouvant changer assez souvent, des options étant renommées et de nouvelles options ajoutées) représente une charge de travail inaccessible à une équipe de développement déjà insuffisante. Enfin, les compétences requises pour une telle tâche sont en général différentes des compétences des développeurs de modèles numériques…

Approche

[image: Approche retenue]

L’approche choisie par Inishell est basée sur quelque chose comme les modèles d’interface déclarative, en simplifiant énormément le concept du fait du scénario d’usage choisi : pas de mise en page complexe, peu de diversité des éléments graphiques (il s’agit principalement d’entrer un choix parmi une liste, un chemin ou nom de fichier, une valeur numérique entière ou réelle). L’accent est mis sur le type d’entrée attendu de la part de l’utilisateur, qui générera un widget graphique (boite de saisie, boite déroulante, etc) qui lui-même émettra le bon code dans le fichier INI. La spécification des paramètres attendus de la part de l’utilisateur est faite via un fichier XML qui donne la clef de configuration, le type de donnée, quelques conditions permettant de valider l’entrée et un texte d’aide (pouvant contenir des hyperliens cliquables).

[image: Vue d’ensemble d’Inishell]

Il est donc possible d’avoir autant de fichiers XML que souhaité, et autant de modèles numériques que souhaité. Évidement, il est aussi possible de l’utiliser de la même façon pour générer des fichiers INI pour d’autres types de logiciels (par exemple, pour générer un php.ini). À l’ouverture d’Inishell, l’utilisateur doit choisir pour quelle application générer un fichier de configuration (zone 1 sur la capture d’écran). Ceci déclenche la lecture du fichier XML et la génération des widgets dans la zone 2, ou l’utilisateur peut ensuite entrer sa configuration. Celle-ci sera ensuite enregistrée dans un fichier INI, qui peut bien évidement être relue par Inishell (toute clef de configuration non reconnue, ainsi que les commentaires, sera conservée même si elle ne sera pas affichée).

[image: Exemple de deux zones d’entrées et une frame]

À titre d’exemple, la capture d’écran montre le contenu du fichier XML permettant de générer une frame avec deux zones de saisie (un chiffre réel et un fichier). La validation des entrées utilisateur se fait via le type de donnée, les limites min/max ainsi que des expressions régulières. Il est enfin possible de lancer une application « consommant » ce fichier INI directement depuis Inishell (ou des options en ligne de commande seront aussi fournies et la sortie terminale capturée et affichée dans Inishell).

[image: Entrée des options en ligne de commande d’une application tierce qui sera lancée depuis Inishell]

Conclusion

La version d’il y a dix ans (en Java) commençait doucement à avoir fait son temps : Java est de moins en moins disponible par défaut sur les machines de nos utilisateurs (voire vient avec ses propres bugs), il n’était pas possible de lancer des applications en ligne de commande depuis et le code n’avait jamais eu l’attention qu’il aurait dû avoir (suite à l’accident de ski de la stagiaire de l’époque!). Une réécriture complète, native et autosuffisante s’imposait donc.

Nous sommes très satisfaits de cette nouvelle version en Qt, qui nous a permis de corriger tous les défauts de l’ancienne version. Inishell est maintenant agréable d’utilisation, correctement intégrée dans les environnements des utilisateurs et pouvoir lancer les modèles directement depuis l’interface graphique est un vrai plus (ceci évite d’avoir la tentation de repasser par un éditeur de texte pour modifier le fichier INI). Nous l’utilisons maintenant quasi exclusivement (aux dépens de la console) et nos utilisateurs se laissent aussi convaincre.

Il reste malgré tout des choses en chantier : quelques bugs mineurs mais tout de même embêtants (dans certains widgets, le curseur d’édition se replace en fin de ligne après chaque appui de touche) et quelques questions plus fondamentales : les fichiers XML sont pour l’instant distribués avec Inishell, alors qu’il faudrait les distribuer avec les modèles utilisateurs. Mais dans ce cas, quelle est la bonne stratégie pour retrouver tous les fichiers XML à lire (ainsi que des fichiers XML qui appellent via un « include » le fichier XML d’un autre outil numérique). Une évolution probable sera le support de formats autres qu’INI et que d’autres outils se basent eux aussi sur Inishell!

Aller plus loin

	
Publication dans Geoscientific Model Development
(109 clics)

	
Vidéo de présentation (2 minutes)
(229 clics)

	
Gitlab d'Inishell
(301 clics)

	
Télécharger une version précompilée
(89 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/3f42bb5774fba8f83ce2006db38fe8b85f96b9cd574be7e6517a1827.png
INIshell for MeteolO
Fle GUE Yew Window

P ERR D
Applications N\ VGeneraI Input = Output Filters = Generators | Interpolations1D | Interpolations2D |

Jinishell-apps Import files
Alpine3D

-+ MeteolO

4 SNOWPACK IMPORT_AFTER ’<nofi!e set>

IPGRT_BERGRE ‘<no file set> ‘ Import another ind file before evarything else

\ Import another ini file after everything else.

o Data buffering
BUFFER_SIZE 370 days | Size of a chunk of data to read at once.

BUFF_BEFORE 1.5 days 2| £« Alternate way of buffer centering.
. . \
Simulations

INI files x DATA_QA_LOGS e - \ Log all preprocessing operations?

N Warning: this might generate very large logs!
METEOIO .

Raady.

EPUB/093ead921434ae7626dfd3a6ff20e90827f2ccefd9a04fbf32f42f72.png
(@) XML declaration
kflow>

<wor

<section caption="DEMO">

<element type="label" caption="Start date:"/>
<element id="start_date" type="datetime"/>
<element type="label" caption="INI file:"/>
<element id="1ini" type="text" default="${inifile}"/>
<element caption="Run DEMO" type="button">
<command>my_demo -c %ini -b S%start_date</command>
</element>
<element type="label" caption="Visualize results:"/>
<element id="visualize" caption="Open niViz" type="button">
<command>setpath(%outpath, ${key:0UTPUT::PATH})</command>
<command>openurl(https://run.niviz.org)</command>
</element>
<element type="label" caption="Then drag your desired
output file into niViz from below:"/>

<element type="path" id="smetpath"/>

</section>
</workflow>

(b) Inishell Workflow

DEMO
Start date:

2020-08-28T00:00:00 b4

INI file:
${inifile}

Run DEMO

Visualize results:

Open niViz

Then drag your desired output file
into niViz from below:

m,,

m,, |

MST96_rcp8.5.ini
MST96_rcp8.5.pro
MST96_rcp8.5.smet
MST96_ref.ini =

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/872db4ed798bf2fa570e985fc25b4644995d5d7a87f0230b63d71b1b.png
(a) XML declaration

<frame caption="Model input data">
<section name="Input"/>
<parameter key="TIME_ZONE" type="number"
format="decimal" optional="false">
<help>The time zone of your data</help>
</parameter>
<parameter key="FORCING_DATA" type="file" mode="input">
<help>The data file</help>
</parameter>
</frame>

(b) Inishell GUI

TIME_ZONE 1.00 o

FORCING_DATA <no file set>

(c) INT entry
[Input]
TIME_ZONE = 1

EPUB/807c5b5f5f59b82b201172fdc02a60c7feffa22c0b869250b69d0248.png
2 —m

Model developer

So—

Model user Model results

'
l

Numerical

Model

EPUB/imagessections71.png

