

Instantané sur le parallélisme et le code

Posté par Jiehong (site web personnel) le 22 juin 2015 à 14:39.
Édité par palm123, BAud, Benoît Sibaud, ZeroHeure et PolePosition.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	thread

[image: Technologie]

Avant, la fréquence des micro-processeurs semblait suivre une loi de Moore, mais à mesure que les limites physiques ont été approchées il a fallu innover, et le multi-cœur est devenu le standard, même sur mobile.

Développer une application qui sache utiliser plusieurs fils d’exécution ou processus en même temps n'est pas un problème forcément facile, pour lequel de nombreuses méthodes ont vu le jour. Ici, on vous propose une vision haut niveau de quelques idées du passé, mais surtout d'aujourd'hui, pour utiliser la puissance de nos machines sans écrire des bogues plus vite que nos ombres.

Sommaire

	
Exposé du problème
	Le cas trivial

	Le cas partagé

	Différence entre concurrence et parallélisme

	Les verrous et sémaphores

	Le modèle à acteurs (et objets actifs)

	Mémoire transactionnelle logicielle (Software Transactional Memory — STM)

	Voilà

Exposé du problème

Imaginez que vous deviez écrire et lire un même fichier dans deux processus différents. C'est notre cas simple de départ.

Le cas trivial

Dans ce cas, vos processus ne tournent jamais en même temps, ou alors aucun n'écrit quoi que ce soit sur le fichier et se contente de lire le fichier.

Tout devrait marcher correctement.

Le cas partagé

Vos deux processus se mettent à tourner en même temps et ils ont carte blanche pour écrire ou supprimer le fichier.

Il se peut que l'un des processus vérifie l'existence du fichier avant d'y écrire quelque chose, mais que l'autre processus l'efface juste après. Résultat : le premier processus va planter ou retourner une exception. Pourtant, le code aura l'air juste.

Différence entre concurrence et parallélisme

La concurrence est d'abord le fait de partager un bout de la mémoire avec plusieurs processus (ou fils d'exécutions).

Le parallélisme consiste en l'exécution de plusieurs processus en même temps, sur des données disjointes.

C'est une distinction qui est plus forte en anglais, puisque en français le parallélisme n'est qu'un type de concurrence. Mais la séparation des deux est pratique d'un point de vue pédagogique.

Les verrous et sémaphores

La première idée que l'on apprend consiste à mettre un cadenas sur l'espace mémoire partagé, avec une seule et même clé. C'est ce que l'on appelle un verrou. Les sémaphores ne sont que le cas où l'on fournit un nombre fini de clés supérieur à 1.

En pseudo-code, ça ressemble souvent à ça :

tant que verrou == 1:
 attend()
verrou = 1
Je calcule ce dont j'ai besoin ici
Et c'est assez long
Puis je rend le verrou
verrou = 0

Avec deux processus, ça peut aller, mais quand le nombre augmente, il est très facile d'oublier de redonner la clé, et il est très facile de se retrouver avec des processus qui ne font qu'attendre une clé qui n'arrive jamais. Le nombre de cas différents à considérer augmente de manière factorielle avec le nombre de bouts de mémoires partagés.

La quasi-totalité des langages de programmation vous laisseront faire ça.

Le nombre élevé d'erreurs engendrées par cette technique a conduit à l'élaboration d'abstractions ou de manières de faire différentes.

Le modèle à acteurs (et objets actifs)

Dans les années 1970, une autre idée est apparue : au lieu de partager des zones mémoires et de bloquer de manière difficilement prévisible, pourquoi ne pas supposer qu'un processus est ce que l'on appelle un acteur, et qu'il ne peut communiquer avec d'autres acteurs que via des messages.

Chaque acteur effectue une action demandée par le biais de messages.

Erlang est le plus grand représentant de cette manière de faire. L'avantage est que la manière d'envoyer les messages permet de facilement parler à des processus sur le réseau, sans avoir rien de spécial à faire.

L'autre avantage, c'est la possibilité de pouvoir déboguer beaucoup plus facilement, même s'il est toujours possible que le système se bloque si tout le monde se met à attendre.

Enfin, si un acteur se plante, il peut simplement être relancé et n'impacte pas les autres acteurs.

En pseudo-code, ça se passerait à peu près comme ça :

calcul_x étant une fonction quelconque, attendant 2 paramètres.
mon_acteur = nouvel_acteur()
resultat = envoyer_a(mon_acteur, calcul_x, parametre_1, parametre_2)
#
Il est à noter que `resultat` n'est pas forcément calculé de manière synchrone
puisque `mon_acteur` fait peut-être autre chose, mais cette nouvelle demande est dans sa liste (ou boîte mél)

Les objets actifs ne sont que de simples instances de classes, considérés comme des acteurs, ce qui s'insère très simplement dans la programmation objet : l'appel à une méthode se fait comme d'habitude, mais elle est transformée en message passé au-dit acteur à l’exécution, par exemple).

À noter : Message Passing Interface (MPI), utilisé principalement au sein des supercalculateurs est un modèle de communication entre machines et leurs processus. Le modèle à acteur est transparent (c'est-à-dire qu'un acteur peut être sur la machine locale ou sur une autre machine). D'ailleurs, MPI peut être utilisé pour implémenter le modèle à acteur.

Le modèle à acteur n'est qu'un exemple de la manière de penser de tout un pan de recherche basé sur l'algèbre de processus qui a le vent en poupe puisque c'est quelque chose de calqué sur des processus naturels dont on a l'habitude (comme les communications intercellulaires au sein d'un organisme).

Je vous conseille d'essayer ça avec Erlang, Akka ou Quasar pour Java/Scala et Celluloid pour Ruby.

Il est également possible de faire ça en Python grâce à Pykka par exemple (ou pulsar), SObjectizer ou CAF_C++ Actor Framework pour le C++, hactor pour Haskell.

Mémoire transactionnelle logicielle (Software Transactional Memory — STM)

Une autre idée est de se baser sur ce que font les bases de données, notamment en assurant l'atomicité des transactions : c'est l'idée de la mémoire transactionnelle (dans les années 80, sous le nom de Paratran)

C'est-à-dire que la transaction commence lorsque vous ouvrez le fichier, et se termine quand vous avez fini d'écrire. Rien ne peut se passer sur le fichier avant que vous n'ayez fini.

C'est une manière de cacher les mutex, mais c'est souvent implémenté sans verrous.

De manière générale, cette technique est implémentée de manière optimiste, notamment dans Haskell, avec un type de variable spéciale : la TVar.

L'idée étant que chaque processus utilisant une TVar le fait comme si ne rien n'était, à partir de la valeur de la TVar telle qu'elle était à la vérification.

Puis, chaque modification de cette TVar est enregistrée dans un journal propre à chaque processus.

En pseudo code, voici à quoi ça pourrait ressembler :

bloc atomique:
 valeur = lire_TVAR(x)
 # on fait plein de chose, et la valeur change
 ecrire_TVAR(x, valeur)
#fin bloc atomique

À la fin du bloc atomique, la valeur de la TVar est lue et comparée à celle lue en début du bloc. Si cette valeur est identique, alors personne n'a modifié la TVar, et la nouvelle valeur est écrite de manière sûre. Dans le cas contraire, le bloc atomique est rejoué avec la nouvelle valeur de la TVar, d'où le nom optimiste.

En Haskell, il est possible d'attendre une certaine valeur pour une TVar via un if et le « mot clé » retry : un signal est lié à la TVar, et sa valeur n'est re-vérifiée qu'après avoir été changée (programmation évènementielle). Tout ceci étant transparent pour le développeur. En pseudo-code, ça donne quelque chose comme ça :

bloc atomique:
 valeur = lire_TVAR(x)
 si valeur > 0:
 retry
 # tout le bloc atomique sera ré-exécuté quand `valeur` aura changé. Ce qui bloque le processus.
 ecrire_TVAR(x, nouvelle_valeur)
fin bloc atomique

Je vous conseille d'essayer ça en Haskell avec STM, en Java avec DeuceSTM ou avec Clojure.

C'est également possible en C++ avec TinySTM, . Par contre, en Python, il faudra repasser.

Voilà

Vous avez pu entrevoir quelques techniques permettant de gérer la concurrence d'une manière moins traditionnelle, et vous êtes libres d'essayer tout ça si ça vous a plu.

Les commentaires sont également là pour préciser des choses, ou discuter d'autres systèmes qui ne sont pas mentionnés dans cette dépêche.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

