

Java 8 et NetBeans 8 sont disponibles

Posté par claudex le 28 mars 2014 à 14:19.
Édité par Davy Defaud, barmic, j, BAud, ZeroHeure, palm123, Nÿco, domak et Sébastien Koechlin.
Modéré par Nÿco.
Licence CC By‑SA.

Étiquettes :
aucune

[image: Java]

Oracle a annoncé la mise à disposition de la nouvelle version standard de Java, huitième du nom. Deux ans et sept mois après Java 7, la publication de cette nouvelle version a été retardée afin d’améliorer la sécurité.

Et pour permettre d’exploiter au mieux ce nouveau JDK, une nouvelle version de l’environnement de développement NetBeans est également disponible et porte le même numéro. Côté Eclipse, un correctif est proposé et concernant IntelliJ, Java 8 est pris en charge dans la version 13.1 sortie la semaine dernière.

Ces deux sorties marquent la volonté d’Oracle de convaincre les développeurs.

Sommaire

	
Nouveautés Java 8
	
Les lambdas
	Interfaces fonctionnelles (FunctionalInterface)

	API Stream

	Nashorn, JavaScript dans Java

	Implémentation par défaut dans les interfaces (Defender Methods)

	Méthodes statiques dans les interfaces

	API Date

	Disparition du Permgen

Nouveautés Java 8

Les lambdas

C’est une technique pour écrire des fonctions qui ne sont pas nommées et directement définies là où elles sont appelées. Cela permet une écriture plus simple pour les fonctions qui ne sont appelées qu’à un seul endroit du code. L’exemple classique est pour définir une fonction de tri :

public class Users {
 public String username;
 public int karma;

 /**
 * Sort users by karma
 */
 public static void sortUser(Users[] users) {
 Arrays.sort(users, (Users u1, Users u2) -> { return u1.karma - u2.karma; });
 }
}

Avant l’introduction des lambdas, dans cet exemple, il fallait définir une implémentation pour Comparator, ce qui était un peu plus verbeux :

public class Users
{
 public String username;
 public int karma;

 /**
 * Sort users by karma
 */
 public static void sortUser(Users[] users) {
 Arrays.sort(users, new Comparator<Users>() {
 @Override
 public int compare(Users u1, Users u2) {
 return u1.karma - u2.karma;
 }
 });
 }
}

Interfaces fonctionnelles (FunctionalInterface)

Pour implémenter les lambdas, le langage s’appuie sur les interfaces fonctionnelles, c’est‐à‐dire des interfaces possédant une seule méthode abstraite. Toutes les interfaces respectant cette condition sont, de fait, des interfaces fonctionnelles. Toutefois, il est possible d’utiliser l’annotation @FunctionalInterface pour qu’une erreur soit levée si une interface ne respecte plus cette condition.

API Stream

L’interface de programmation (API) Stream a été ajoutée, permettant de représenter des données sous forme de flux et de les manipuler de manière efficace. Cette API s’appuie largement sur les fonctions lambdas décrites plus haut.

Les habitués des tubes (pipes) du Shell (il y en a par ici ? :)), des langages fonctionnels et de certains autres comme Perl ne devraient pas être trop dépaysés par cette manière de programmer.

Voici un exemple sorti de la documentation officielle :

int sum = widgets.stream()
 .filter(b -> b.getColor() == RED)
 .mapToInt(b -> b.getWeight())
 .sum();

Ici, widgets est une Collection<Widget>, mais cette API peut être utilisée avec toute sorte de flux de données, comme des fichiers ou des sockets. Il est aussi possible de créer ses propres types de flux stream.

Enfin, il est possible de paralléliser les traitements sur ces flux de manière simple (plus simple que gérer des Threads).

Nashorn, JavaScript dans Java

Java inclut désormais un nouveau moteur JavaScript qui remplace le vieillissant Rhino. Il permet donc d’invoquer du code JavaScript directement dans le code Java. Il est évidemment possible d’interagir avec le code Java en appelant du code Java en JavaScript, ou même en étendant des classes Java.

Il est aussi possible de l’utiliser directement en ligne de commande comme un script classique et d’éviter d’écrire un wrapper Java. La commande s’appelle jjs.

Implémentation par défaut dans les interfaces (Defender Methods)

Jusqu’à la version précédente, les interfaces Java ne pouvaient contenir de code, uniquement des déclarations de méthodes. À partir de cette version, les implémentations de méthodes statiques et les implémentations par défaut de méthodes sont possibles. Ces dernières sont des implémentations des méthodes qui seront utilisées si la méthode n’est pas redéfinie dans une autre implémentation qui étend celle‐ci ou une classe qui implémente l’interface sans implémentation pour la méthode.

Cela fait resurgir le problème de l’héritage en diamant qui était évité par l’absence d’héritage multiple de classe et que les interfaces permettaient d’éviter par rapport aux classes abstraites. Que faire lorsqu’une méthode est définie dans plusieurs interfaces implémentées dans une classe ? Prenons l’exemple suivant :

interface A {
 void m() default {}
}
interface B extends A {}
interface C extends A {}
class D implements B, C {}

Ce cas est assez simple, D héritera de l’implémentation dans A. Si B ou C implémentent la méthode, ce sera cette implémentation qui sera utilisée (l’implémentation la plus spécifique est utilisée). Si B et C implémentent la méthode, il faudrait spécifier explicitement quelle méthode sera utilisée.

Méthodes statiques dans les interfaces

En plus des méthodes par défaut, il est possible de définir des méthodes statiques dans les interfaces. Il n’y a pas de différence avec les méthodes statiques dans une classe.

API Date

Beaucoup de monde attendait une évolution (une révolution ?) de l’interface de programmation (API) Date et utilisait JodaTime à la place de l’API standard.

Java 8 apporte une nouvelle API pour gérer les dates, qui est divisée en deux parties :

	le temps humain, principalement porté par LocalDate et LocalTime gère une date prenant en compte le fuseau horaire et possédant distinctement différents champs (pour l’heure, le jour, etc.) ;

	le temps machine, qui est un horodatage (timestamp) et qui s’appuie sur les classes Instant et Duration.

Grande nouvelle : cette nouvelle API est thread-safe ! Je vous laisse découvrir plus en détail cette API au travers du tutoriel de Yohan Beschi, Tutoriel sur les nouveautés du langage 8 : la nouvelle API Date et Time.

Disparition du Permgen

C’est une évolution spécifique à l’implémentation de référence, mais ça fera plaisir à beaucoup de monde en évitant des erreurs du type java.lang.OutOfMemoryError: PermGen space. Le permgen stockait les définitions de classes définies dans le programme en cours, et sa taille pouvait poser un problème pour les grosses applications utilisant beaucoup de classes ou les générant en cours de fonctionnement. C’est donc un point en moins à surveiller pour les mises en production.

Aller plus loin

	
Notes de version : What’s New in JDK 8
(297 clics)

	
NetBeans 8
(303 clics)

	
Téléchargement
(163 clics)

	
JDK 8 features
(147 clics)

	
[LinuxFr.org] Naissance d’un géant : Java
(301 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections23.png

