

Javascript comme langage par défaut pour GNOME

Posté par Anonyme le 06 février 2013 à 16:26.
Édité par rootix, patrick_g, baud123 et Florent Zara.
Modéré par Florent Zara.
Licence CC By‑SA.

Étiquettes :

	fosdem

	lennart_poettering

	firefox

[image: Gnome]

Les développeurs GNOME se sont rassemblés pour proposer des solutions afin d'améliorer l' expérience des développeurs. Dans la suite des annonces sur GNOME 4.0 et la volonté de fournir un SDK stable et accessible, cette édition est centrée sur l'expérience des nouveaux développeurs d'application tierce.

La question centrale est : « Quel processus depuis l'ouverture de mon éditeur jusqu'à l'installation de mon application par des utilisateurs ? ». Opération séduction donc, pour GNOME qui veut devenir une plateforme plus attractive pour les développeurs d'applications.

Sommaire

	
Le Hackfest

	
Outils de développement

	
Documentation

	
Plateforme et Javascript
	
Pourquoi mettre en avant un langage ?

	
Quelles contraintes ce langage doit-il satisfaire ?

	
Et Gtk+ ?

	
Conclusion

Le souci de plaire aux développeurs n'est pas nouveau au sein du projet GNOME. Dès son origine, le développeur doit pouvoir écrire une application GNOME dans le langage de son choix. Ce fut un des objectifs de GObject puis de GObject introspection, un des fondements de la plateforme GNOME.

Aujourd'hui que les bases techniques sont là, c'est une approche globale qui est recherchée pour multiplier les applications GNOME. L'idée est donc de fournir une solution officielle et unifiée aux problématiques du développement d'application, sans exclusive.

Le Hackfest

L'événement s'est déroulé à Bruxelles, capitale de la Belgique et haut lieu du logiciel libre grâce notamment au FOSDEM. Une trentaine de développeurs se sont réunis, y compris des développeurs du noyau comme Greg Kroah-Hartman ou des trolleurs comme Lennart Poettering.

À l'instar de la conception de l'interface utilisateur, les développeurs GNOME ont commencé la réflexion par analyser l'État de l'art dans la concurrence : SDK iPhone, OS X, Firefox OS, Androïd et Windows.

Outils de développement

Une des premières questions est : avec quoi coder ? Le projet GNOME propose plusieurs IDE, principalement Anjuta et MonoDevelop pour les plus actifs. Mais Emacs, Vim ou même Gedit restent des choix répandus. Question restée ouverte. Des idées ont émergé comme livrer des jeux d'extensions pour Emacs ou vim intégrant Devhelp, glade et d'autres outils incontournables pour le developeur GNOME.

[image: GtkParasite]

Un deuxième aspect est le débuggage. C'est actuellement difficile de debugguer des interfaces en Gtk. Pourtant, des initiatives existent comme GtkParasite, un inspecteur à là Firebug. Ce genre d'outils gagnerait à être intégré et supporté dans la plateforme de développement. D'autres utilitaires de débuggages DBus, GObject, etc. gagneraient à avoir plus de visibilité.

Documentation

On ne peut pas se contenter de lire le code des autres. Le récent travail de fond sur http://developer.gnome.org/ va être poursuivit. il faut reconnaître la tâche considérable accomplie par des projets OPW pour documenter le développement d'application GNOME.

Outre les discussions, du code a été écrit durant l'événement. L'application de navigation dans la documentation − Devhelp − a commencé sa migration vers l'ergonomie GNOME 3. Portage vers gsettings, python3 et webkit2 et une tripotée de corrections de bugs. Le menu d'application est utilisé, mais la barre de menu de fenêtre persiste.

[image: Devhelp 3.7.5]

Plateforme et Javascript

Une décision importante a été prise par les membres de ce Hackfest : le choix du langage par défaut pour le développement d'application GNOME. Attention, il ne s'agit pas de réécrire les programmes existants dans un nouveau langage. Actuellement, le C est utilisé pour documenter la plateforme, car c'est la langue native des bibliothèques. Il faut présenter un langage de haut niveau pour le développement d'applications.

Pourquoi mettre en avant un langage ?

La question n'est pas nouvelle. Havoc PENNINGTON avait déjà abordé le sujet à l'époque de la sortie de la plateforme .NET. Le choix était plutôt Java, Mono ou C++ ? et Havoc était un peu seul à se poser cette question.

Voici quelques raisons qui ont poussé les développeurs GNOME à se poser cette question :

	La majorités des applications sont écrites dans un langage de plus haut niveau : python, vala, javascript, perl, C#, etc. Peu sont écrites en C ou en C++.

	La documentation de la plateforme est en C, de fait les documentations dans les langages de haut-niveaux sont en retard, alors que GObject introspection a supprimé le retard des passerelles.

	Harmoniser la documentation de la plateforme autour d'un langage simple et accessible.

	Aider les nouveaux développeurs à se lancer.

	Faciliter le partage de code entre les développeurs.

	Garantir un environnement pour le développement rapide : passerelles vers les bibliothèques, documentation, debuggers, etc.

Mettre en avant un langage n'est pas rejeter les autres, au contraire. Le but est justement que l'utilisation première des bibliothèques de la plateforme se fasse à travers des passerelles. Hors GObject Introspection est utilisé pour tout les langages. C'est donc un gain pour tous les langages de haut niveau que d'en avoir un mis en avant.

Quelles contraintes ce langage doit-il satisfaire ?

	Paradigme objet, dynamique, de haut niveau.

	Permettre le REPL : read-eval-print-loop.

	Répandu hors de GNOME.

	Intégrable facilement avec la plateforme GNOME, sans fournir de doublons standard.

Vala n'est donc pas choisit, cependant il a de beaux jours devant lui comme langage de choix pour écrire des bibliothèques. Python est également exclu car il fournit déjà une énorme bibliothèque standard, redondante en partie avec la plateforme GNOME.

C'est finalement Javascript qui a obtenu le plus large consensus. En voici quelques raisons :

	Réponds aux critères ci-dessus.

	Les développements récents en font un langage rapide et indépendant de la plateforme.

	Très répandu, de plus en plus en dehors du web avec Windows 8.

	Déjà fait ses preuves avec GNOME Shell et GNOME Document.

Concrètement, les nouvelles applications GNOME seront en javascript, à l'instar de GNOME Document. Les autres ne devraient pas migrer sauf avis du mainteneur. Ainsi GNOME Contact restera en Vala.

Les réactions n'ont pas manqué. Javascript est un langage à prototype, n'est-ce pas étrange pour utiliser GObject ? Les interprêteurs javascripts sont variés et incompatibles. Beaucoup de développeurs ont une mauvaise opinion de javascript, souvent justifiée. L'avenir confirmera si ce choix est judicieux. En tout cas, ce n'est pas la mode qui a dicté ce choix. Javascript est déjà utilisé intensivement par GNOME.

ECMAScript 6 − nom de code Harmony − devrait résoudre nombres de réticences. L'ajout de class, extends, super, des valeurs par défaut des arguments, des modules, les chaînes sur plusieurs lignes, etc. Les développeurs python devraient retrouver un peu de calme avec tout cela. Mais quand ? On avance l'horizon 2014… en attendant il y aura des mécontents !

Et Gtk+ ?

Le choix de javascript ne doit pas occulter les questions autour de Gtk+ lui-même. En vrac :

	Fournir un widget adapté pour les nouvelles vues en grille de l'ergonomie GNOME 3. Étonnant que ça ne soit pas déjà fait…

	Gestionnaire de scène pour les applications par étapes, avec différentes pages. Façon application téléphone. Actuellement, on utilise un notebook sans onglets pour basculer d'une vue à l'autre.

	Alignement des widgets sur la ligne d'écriture, et non sur les limites. Très pratique pour aligner les champs et les étiquettes.

D'autres hacks dans les applications existantes montrent des limites dans Gtk+.

Conclusion

Ce hackfest est un tournant pour définir GNOME comme une plateforme. Les décisions importantes et l'augmentation du nombre de participants montrent un projet en bonne santé côté développeurs, mais les fruits ne sont pas encore visibles : GNOME 3 est toujours le parent pauvre sur Ubuntu, les utilisateurs de GNOME 3 sont encore peu nombreux, la communauté des développeurs occasionnels encore plus ! À confirmer donc !

Aller plus loin

	
Retours de l'événement sur le wiki de GNOME
(186 clics)

	
ECMAScript 6
(220 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/bbb60a205e401adea8ad366c13bc474082c997589b379d1060258d83.png
=== import gtk
== def show_parasite(]

win = gtk.Window()

win.set_border_width(12)

win. show()

inage = gtk.inage_new_fron_file("parasite.png")

inage. show()

win.add(inage)

>>> button = parasite.gobj(Ox15fedbo]

2> button.connect " clicked', lanbda w: show_parasite(]]
1727

s |

Inspect. I Edit Mode | [show Graphic updates |
Widget Name Realized | Mappd[*] [Property v value
> o || || spppaimtable FaLse
b o 0 || | bordermign o
b o o ||| can-defaute rase
b o 0 ||| cantocus TRUE
< GiTable tables @ @ ||| | composite-chila FaLse
D GtkTable core_panel]
> o
~ GikTable basic_panel @
D GtkButton calc_clear_entry_simple_button)
D GtkButton calc_clear_simple_button)
calc_change sian simple button

EPUB/223cdfe63812682de408828f9bb8a0dec7e4c3bd3b61607ea2291571.png
[Devhelp

GTK+ 2.0 Tutorial - Getting Started
Fenétre Edition Affichage Aller 3

“&° Précédent = @

— control reaches this point, GTK will sleep waiting for X events (such as
| Sommaire | Rechercher button or key presses), timeouts, or file I notifications to occur. In our
gnome-keyring ererence | simple example, however, events are ignored.

GObject Introspection Ref...

GObject Reference Manual 3.1. Hello World in GTK

GStreamer 0.10 Core Ref... Now for a program with a widget (a button). It's the classic hello world a

GStreamer 0.10 Library R...

GStreamer Base Plugins O...

GStreamer Base Plugins O...
GStreamer Core Plugins O...

GStreamer Good Plugins ... ||| #include <gtk/gtk.h>

GStreamer Ugly Plugins O. /% This is a callback function. The data arguments are ignored

. * in this exanple. More on callbacks below. */
GTK+ 2.0 Tutorial static void hello(Gtkwidget *widget,
Tutorial Availability ¢ gpointer data)

Introduction

Getting Started

Hello World in GTK static gboolean delete event(GtkWidget *widget,
GdkEvent *event,
gpointer data)

g_print ("Hello World\n");

Compiling Hello World
Theory of Signals and

Events

EPUB/imagessections17.png

