

Je crée mon jeu vidéo E07 : cartes, données et systèmes à entités

Posté par rewind (Mastodon) le 16 décembre 2013 à 08:23.
Édité par ZeroHeure et Benoît Sibaud.
Modéré par claudex.
Licence CC By‑SA.

Étiquettes :

	gamedev

[image: Jeu]

« Je crée mon jeu vidéo » est une série d'articles sur la création d'un jeu vidéo, depuis la feuille blanche jusqu'au résultat final. On y parle de tout : de la technique, du contenu, de la joie de voir bouger des sprites, de la lassitude du développement solitaire, etc. Vous pouvez suivre cette série grâce au tag gamedev.

Dans l'épisode 06, on a vu comment on pouvait simplement générer des arbres procéduralement. Cet épisode invitait à des extensions grâce aux quelques liens donnés dans les commentaires et aussi grâce à d'autres lectures que j'ai pu faire depuis. Mais pas tout de suite. Aujourd'hui, on va s'intéresser à la carte du jeu et je vais partager mes réflexions sur les données du jeu et les systèmes à entités.

Sommaire

	
Gestion de carte
	Les données des niveaux

	Le passage d'un niveau à l'autre

	L'implémentation

	Un petit aperçu

	
Réflexion sur les données
	Données statiques et données dynamiques

	Données et systèmes à entités

	Données et traitements

	Version 0.0.3 et la suite

La version 0.0.3 d'Akagoria vient de sortir et avec elle, une gestion améliorée de la carte. Ces développements m'ont amené à me poser plein de questions sur les données du jeu et les systèmes à entités.

Gestion de carte

Tout d'abord, je signale que la carte actuellement présente n'est pas du tout la carte définitive. Il s'agit simplement d'une île pour tester les divers éléments qui sont ajoutés. La carte finale sera beaucoup plus grande et aura certainement un autre ensemble de tuiles (tileset). On peut voir cet espace de test comme la maison de Lara Croft dans les premiers opus de la série Tomb Raider (oui, ceux où on pouvait enfermer le majordome dans la chambre froide).

[image: L'île de test]

La dernière fois qu'on a parlé de la carte, j'avais dit que j'étais capable de l'afficher morceau par morceau, et pas en entier à chaque frame, ce qui améliorait les performances. Maintenant, la carte ne doit pas avoir qu'un seul niveau : il y aura des grottes, des maisons, des caves, bref tout plein d'endroits qui sont soit en hauteur, soit en profondeur. Il faut donc gérer plusieurs éléments :

	comment on définit un niveau différent, c'est-à-dire où va-t-on mettre les données de ce niveau ?

	comment on passe d'un niveau à un autre ?

	comment on implémente tout ça ?

Les données des niveaux

Il y a deux solutions que j'ai envisagées pour répondre à ce problème : soit mettre les niveaux dans des fichiers complètement différents, soit mettre les niveaux dans le même fichier. Dans le premier cas, il fallait faire une correspondance entre les différents fichiers et niveaux, par exemple savoir que quand on descend à tel endroit, on se retrouve à tel autre endroit. L'avantage, c'est qu'on était plus flexible avec plusieurs cartes, dont certaines plus petites (genre le sixième sous-sol où se trouve le boss de fin et rien d'autre, il peut être assez petit). Dans le second cas, la correspondance entre les niveaux est bien plus aisée. En contrepartie, l'édition des niveaux est plus difficile étant donné qu'il faut jongler entre les calques pour avoir la bonne vue du niveau.

J'ai choisi la seconde solution parce que je préférais avoir la correspondance gratuitement. En effet, étant donné la dimension envisagée de la carte, il me paraît difficile de devoir gérer cette correspondance à la main, je m'y perdrai forcément au bout d'un moment. Et puis les calques ne sont pas si mal gérés dans Tiled, ce qui permet d'éditer assez facilement.

Le passage d'un niveau à l'autre

La question qui vient ensuite est de bien gérer le passage d'un niveau à l'autre. Pour ça, Box2D nous aide. Box2D nous permet de définir des zones de capture (sensor) qui n'ont aucune interaction avec les autres éléments mais qui provoquent des événements de contact qu'on peut écouter et traiter. Il suffit alors de définir une zone de passage au niveau inférieur qui permettra au héros de descendre d'un niveau quand il sera en contact avec celle-ci.

Une difficulté est que le traitement des événements de contact est global dans Box2D, et pas lié à un élément en particulier. Cela force à gérer toutes les zones de changement de niveau de manière globale, mais ce n'est pas trop un problème vu qu'elles vont toutes être définies dans la carte. Car, oui, on va se servir une nouvelle fois de la carte pour définir ces zones. On va utiliser en particulier ce qui est appelé « objets » dans la terminologie de Tiled, c'est-à-dire des formes arbitraires qu'on peut placer n'importe où sur la carte (pas juste aux intersections des tuiles).

L'implémentation

Maintenant qu'on a plusieurs niveaux, il faut être capable de n'afficher que les éléments du niveau courant. Il faut donc pouvoir mettre à jour le niveau courant. J'ai pour cela utilisé le nouveau système d'événements introduit dans la dernière version de ma bibliothèque de systèmes à entités, libes. Pourquoi avoir introduit ça dans cette bibliothèque ? En fait, c'est très complémentaire. J'en parle dans la suite de cet épisode.

Donc, il existe un événement qui va dire quand le héros change de niveau et tous ceux qui doivent mettre à jour leur comportement peuvent alors le faire. Ça concerne tout d'abord l'affichage. Mais pour ça, il faut un composant qui permet de dire à quel niveau se situent les entités concernées. C'est le rôle du composant Altitude qui a été ajouté à pas mal d'entités. Quand le héros passe sur une zone de changement de niveau, il envoie cet événement et tout est bien mis à jour et seules sont affichées les entités du bon niveau.

Reste le dernier problème, comment faire pour éviter les collisions entre objets de niveaux différents ? Heureusement, Box2D vient encore à notre rescousse puisque la bibliothèque prévoit de pouvoir filtrer les collisions en attribuant des masques de bits aux différents éléments. Je ne rentre pas dans les détails de ces filtres qui sont assez évolués et qui permettent de faire des choses très avancées. Le résultat est qu'on peut attribuer des masques suivant le niveau de chaque entité. Et pour le héros, on peut changer son masque dynamiquement suivant le niveau où il se trouve. La limite est qu'on ne peut avoir que seize niveaux mais c'est largement suffisant.

On voit donc que ce petit problème de pouvoir aller d'un niveau à un autre met en œuvre beaucoup de parties différentes qu'il faut coordonner de manière intelligente : la définition dans le fichier TMX, la traduction avec Box2D, le traitement avec libes.

Maintenant qu'on peut lire les zones de changement de niveau dans le fichier TMX, le travail pour lire d'autres informations est déjà bien entamé. Cela a deux conséquences : la première est que la fonctionnalité « lire les données directement dans la carte » qui était prévue un peu plus tard a été avancé dans la roadmap (puisqu'une grosse partie est déjà faite), la seconde est qu'on va aussi lire des données de collision avec des éléments du décor.

Quand je dis « éléments du décor », je ne parle pas des arbres ou des puits qu'on a vu la dernière fois, je parle uniquement des contraintes liées à la géographie de la carte, comme les rivières et les rochers infranchissables, les murs des grottes, le bord de mer. Encore une fois, Box2D permet de définir des formes constituées de segments de droite. Et là, on se dit que le monde est bien fait puisque le fichier TMX et Box2D ont une définition similaires de ces formes : un point de départ et un ensemble de coordonnées relatives à ce point de départ. Les deux font également la différence entre les formes closes (polygon) et les formes ouvertes (polyline). Donc, il suffit de lire le fichier TMX et de traduire les coordonnées du fichier TMX (en pixels) en coordonnées de Box2D (en mètres). Puis on crée le corps qui va bien et on l'ajoute au monde.

Un petit aperçu

Voici un petit aperçu de ce que ça donne sur la carte dans Tiled. Plus précisément, c'est le niveau du sol, on distingue une zone infranchissable en bleuté et une zone de changement de niveau en orangé.

[image: le niveau du sol dans Tiled]

Dans cette deuxième capture, on a exactement la même vue mais au premier niveau souterrain. On distingue à nouveau les zones infranchissables en bleuté (ici, les murs de la grotte), et la zone de changement de niveau en orangé (pour pouvoir remonter).

[image: le premier niveau sous le sol dans Tiled]

Une fois tout ceci défini, on peut voir ce que ça donne dans une vidéo disponible sur le site (attention, le chargement est assez lent) que vous pouvez télécharger directement si le cœur vous en dit.

Réflexion sur les données

J'aimerais maintenant avoir une réflexion sur les données dans les jeux en général, du point de vue du développeur. L'utilisation d'un système à entités pousse à avoir cette réflexion, pour savoir quoi mettre où et comment faire.

Données statiques et données dynamiques

Tout d'abord, dans un jeu, on peut distinguer deux types de données. Premièrement, les données statiques, c'est-à-dire les données qui ne changeront pas au cours du jeu. Le fond de carte est un bon exemple de donnée statique. Deuxièmement, les données dynamiques, c'est-à-dire les données qui apparaissent et/ou évoluent au cours du jeu. La position du joueur est un bon exemple de données dynamique.

Si on imagine ce qu'est l'état courant du jeu, c'est-à-dire ce qu'on va devoir sauvegarder, on voit bien qu'il s'agit uniquement des données dynamiques. Toutes les données dynamiques ? Non, sinon ça serait trop simple. Si on regarde dans le détail, on voit bien qu'on a plusieurs types de données dynamiques. Par exemple pour une animation, on a un numéro de frame courant qui est une donnée dynamique (on la sauvegardera pour retrouver le même état au prochain chargement), et on a l'image courante, qui est une donnée dynamique induite par le numéro de frame courant. Et celle là, on ne devra pas la sauvegarder, puisqu'on peut la retrouver à partir du reste.

Dernier problème, c'est le mélange entre données statiques et dynamiques. Par exemple, quand on définit le corps d'un objet, on a tout un tas de données statiques (la densité, la friction, etc) et on a quelques données dynamiques (position, angle), le tout réuni dans une seule structure qu'on ne maîtrise pas :b2Body.

Données et systèmes à entités

Viennent alors les systèmes à entités. La théorie nous dit que les entités ont plusieurs composants et que ces composants représentent l'état du système. Et quand on veut sauvegarder l'état, il faut « juste » sauvegarder les composants, ça suffit. Donc, on se dit qu'un composant est une donnée dynamique. D'accord, mais je le met où mon b2Body ? Si je le met dans un composant, déjà je vais avoir un problème vu que je n'aurai qu'un pointeur, et je ne vais certainement pas sauvegarder un pointeur ! Bon, je vais donc sauvegarder la position et l'angle contenu dans le b2Body. Mais au moment du chargement, je fais comment ? Je les récupère comment les données statiques contenu dans le b2Body et qui sont nécessaires à sa construction ?

D'ailleurs, dans la version actuelle d'Akagoria, j'ai fait une grosse erreur. En effet, pour afficher ma carte, j'avais tout un tas de tuile, que je voulais gérer de manière efficace, c'est-à-dire n'afficher que ce qui est nécessaire. J'ai donc définit un composant Tile que j'ai utilisé pour mettre toutes les informations nécessaires (position de la tuile, coordonnées sur le tileset). Puis j'ai fait un système MapRender qui prend toutes les tuiles situés vers le héros et qui les affiche. Ça marche très bien, mais ça ne va pas du tout ! En effet, mes tuiles sont des données statiques, elles ne font pas partie de l'état du jeu. Si je charge une sauvegarde, je n'ai pas besoin d'avoir tout ça dans la sauvegarde puisque c'est commun à toutes les sauvegardes.

Bref, définir des composants, ce n'est jamais aussi simple qu'on le croit. On peut rapidement tomber dans un piège.

Données et traitements

Dernier point dans cette réflexion, l'ajout d'un système d'événements au système à entités. Souvent, dans la littérature, on présente les systèmes à entités et au détour d'un transparent ou d'une phrase, on voit : « ha oui, tiens il y a aussi un système d'événement mais c'est pas important ». Il peut s'appeler « système de messages » également, mais l'idée est la même : qu'il puisse y avoir une communication directe entre deux entités ou entre l'environnement extérieur et une entité. Je pense et j'affirme que cet élément n'est pas qu'un à-côté qu'on doit traiter comme une note de bas de page, mais qu'il est nécessaire à tout système à entité, il en fait partie intégrante !

Comment en suis-je arrivé à cette conclusion ? Déjà, le fait qu'il y ait systématiquement un système d'événements associé à un système à entités m'a mis la puce à l'oreille. Je trouvais bizarre que personne n'en parle vraiment, sans doute parce que la programmation événementielle est un paradigme bien connu, tandis que les systèmes à entités sont relativement nouveau. Puis, quand on implémente un jeu complet, on tombe forcément sur un cas où on en a besoin. Dans mon cas, c'était le changement de niveau, mais j'avais déjà en tête d'autres cas d'utilisation.

Alors, j'ai poussé ma réflexion. En quoi un système d'événements est-il complémentaire d'un système à entités pur ? La réponse est assez évidente : un système à entités met à jour ses données de manière régulière via les systèmes (environ soixante fois par secondes en simplifiant) tandis qu'un système d'événement n'agit que s'il y a un événement. On retrouve la dichotomie bien connue polling/event, sauf qu'ici, on a mis les données au centre de la réflexion. Ma première conclusion, c'est qu'on a besoin des deux. On pourrait sans doute avoir un composant Event et un système EventHandler qui regarde toutes les entités avec un Event et agit en fonction. Mais d'une part, on serait limité par ce qu'on peut mettre comme données dans l'événement (à moins de définir des composants spéciaux pour chaque type d'événement), et d'autre part, on ferait en fait du polling pour implémenter un gestionnaire d'événement, ce qui est un peu contradictoire. Sans compter que ces événements ne font pas partie de l'état du jeu !

La suite, elle est simple. Avec ces nouveaux outils (entités/événements), il va falloir refaire tout ce qui a été fait pour d'autres paradigme, c'est-à-dire trouver des design pattern adaptés à ces outils, de manière à éviter d'être en permanence en train de se demander comment faire telle ou telle chose. Construire un jeu permet d'avoir des cas très concrets d'utilisation et il suffit alors d'en extraire l'essence. Ça sera un des effets de bord de la création de ce jeu.

Version 0.0.3 et la suite

La version 0.0.3 est sortie le 15 décembre avec les nouveautés décrites précédemment. Dans la version suivante, je vais m'attaquer à la gestion des dialogues, ce qui amènera nécessairement à s'intéresser aux traductions. Il y aura également une petite mise à jour du sprite de Kalista que Naha m'a soumise (mon premier patch par courriel !) mais qui n'a pas été intégrée à cette version 0.0.3.

Aller plus loin

	
Akagoria, la revanche de Kalista
(166 clics)

	
le tag gamedev
(86 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/6ec7cf5260b811e16a9ec8b0288deae393597bfe1cd7db3b7fc0ad7b.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/82c94bbb90f902da74afb2f0414bf307470251ada8aa11fc844cee36.png

EPUB/87c9d79ef763936162310914805649b3529264cada878fc65bef6983.png

EPUB/imagessections15.png

