

JQM, un serveur de batchs asynchrones en Java

Posté par Pierre le 24 décembre 2013 à 00:30.
Édité par Benoît Sibaud, Sebastien, palm123 et claudex.
Modéré par Ontologia.
Licence CC By‑SA.

Étiquettes :

	jqm

[image: Java]

JQM (Job Queue Management) est un gestionnaire de batch sous licence Apache qui permet de traiter sur des noeuds de traitement répartis toutes les tâches potentiellement longues qui ne sont pas désirables dans un serveur d'application à travers un système de files d'attente. Ce logiciel s'adresse à toute application qui souhaite gérer l'exécution de ses tâches hors du serveur d'application.

Une tâche peut être déclenchée depuis un appel Web Service ou une API par une application web, un ordonnanceur ou un flux d'interface.

L'outil propose de nombreuses fonctionnalités comme l’arrêt d’une tâche, la récupération de fichiers générés, la priorisation d’une tâche et bien d’autres. JQM a été développé en Java SE 1.6, utilise Hibernate/JPA 2.0 comme ORM, et une base de donnée comme référentiel de configuration et file d'attente des traitements. JQM est compatible avec les bases HSQL, MySQL et Oracle, les serveurs d’application WebSphere et Glassfish (prochainement Tomcat) pour l'API cliente et gère les ressources JNDI pour les bases de données et les brokers de messages.

L'outil est compatible avec les projets Maven et tout particulièrement la gestion des dépendances et des projets parents.

Architecture

JQM est composé de trois grandes parties :

	les moteurs de traitements (des JVM standalone) qui exécutent les tâches. Il est possible de déployer plusieurs moteurs (ou noeuds) de traitements pour des raisons de performance ou de haute disponibilité

	une base de données qui joue le rôle de file de traitement et de référentiel de configuration

	les clients (une application Web dans un serveur d'application, une ligne de commande, un ordonnanceur, une autre tâche (job) JQM etc.) qui soumettent des tâches à JQM

Les noeuds de traitement sont reliés à des files de traitement en base de données et ont chacun un intervalle de polling et un nombre défini de tâches pouvant tourner simultanément.

Par exemple:

	VIPqueue = 10 tâches en simultané + intervalle de polling de 1 seconde

	SLOWqueue = 3 tâches en simultané + intervalle de polling de 15 min

[image: schema_JQM]

Cycle de vie d'une tâche

Le cycle de vie d'une tâche passe par quatre états différents.

Après avoir été ajoutée à la file d'attente, la tâche prend le status SUBMITTED. Une fois que la tâche est "attrapée" par un noeud, son statut passe à l'état ATTRIBUTED suivi de RUNNING une fois que l'exécution de celle-ci a commencé.

La tâche à la fin de son exécution a deux états possibles, CRASHED si la tâche n'a pas fonctionné correctement ou ENDED si tout le processus s'est déroulé correctement.

[image: Cycle_de_vie_d'une_tache]

Fonctionnalités

Pour les développeurs

	Pour les développeurs de traitement :

une tâche est définie comme telle une fois qu'elle étend (extends) la classe JobBase de l'API jqm-api.

Au sein d'une tâche, il est possible de récupérer des ressources via JNDI (base de données, broker de message, répertoire de traitement…), d'envoyer une progression, un message de log ou de mettre en file une autre tâche.

	
Pour les clients des traitements :

Il existe plusieurs moyens d'utiliser

JQM.

	Par le biais de l'API jqm-clientapi qui permet d'avoir toutes les fonctionnalités existantes, à savoir la possibilité de mettre une tâche en file, de regarder son état, de l'annuler, de le changer de file et bien d'autres ;

	Par le biais d'un web service ;

	Par une interface en ligne de commande ;

	Par une IHM web (très frustre à l'heure actuelle).

Pour les administrateurs

Un administrateur a la possibilité de consulter les logs, de gérer les connexions JNDI, de paramétrer les associations entre les tâches et les files.

Exemple de tâche

public class Caller extends JobBase
{
 @Override
 public void start()
 {
 Map<String, String> params = new HashMap<String, String>();
 p.put("myParam1", "Pouet");
 p.put("myParam2", "tut tut");
 // enQueue is a JobBase method.
 // It is used to enqueue a Job, here “Called”.
 enQueue("CalledJob", "Bob", null, null, null, null, null,
 null, null, null, null, params);
 }
}

Exemple d'intégration de JQM dans un SI

Dans cet exemple, JQM est utilisé pour gérer une intégration au fil de l'eau de message dans un ERP qui ne possède qu'une interface d'entrée de type table / prodédure stockée.

JQM joue un rôle de « joint de dilatation » entre un système événementiel qui gère des pics à 200 000 messages par heure et une interface de type procédure stockée qui traite des données en masse mais ne se prête pas à de nombreuses exécutions simultanées.

Chaque message est traité par un thread d'un conteneur MDB (Message Driven Bean) et déclenche une tâche JQM. La file de tâches JQM est paramétrée pour n'exécuter qu'une seule tâche à la fois et annuler les lancements surnuméraires. La tâche lance la procédure stockée de l'ERP qui traite toutes les données en attente dans la table d'interface.

En pic, plusieurs centaines de messages n'occasionneront qu'un ou deux lancement de la procédure stockée qui traitera en masse les données. Le système permet ainsi de rester très réactif en période creuse (au contraire des systèmes de type batch cyclique) tout en permettant la montée en charge lors des pics.

[image: integration_JQM]

Origine du projet

Le projet a été développé par la société Enioka dans le cadre d'un projet pour l'un de ses clients pour l'intégration d'un ERP.

Suite à la réalisation de ce projet, il a été convenu que JQM deviendrait open source afin de combler le manque actuel de ce type d'outils libres dans un contexte java SE/EE 6.

Le code source et la documentation sont disponibles sur Github.

Aller plus loin

	
Code source sur GitHub
(212 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/8389db45e013c6559b276b18172fd41064eeaebd4791d6d06e0c8d44.jpg

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/3b1d7858887607106f6f269cc99dc44f8639b4e492a4950f79327678.jpg

EPUB/9091db177a1afb3dab197476d54e7efb16c7c3d70f646594b309c9ce.jpg

EPUB/imagessections23.png

