

Jubako et Arx, un conteneur universel et son format d’archive

Posté par GaMa (site web personnel) le 04 novembre 2022 à 21:36.
Édité par orfenor, Yves Bourguignon, vmagnin, palm123, Ysabeau 🧶, patrick_g, Ltrlg et Julien Jorge.
Modéré par Ysabeau 🧶.
Licence CC By‑SA.

Étiquettes :

	rust

	archive

	jubako

	paquet

[image: Technologie]

Jubako, quezako ?

重箱 (Jūbako) est le nom japonais des boîtes à bento. Ce sont des boîtes compartimentées qui peuvent se composer en fonction de ce qu’il y a à stocker dedans (en général un repas).

Et ça tombe bien, parce que Jubako, c’est un format de conteneur qui permet de stocker différentes données et méta-données. J’ai tendance à parler de conteneurs plutôt que d’archives, en effet « archive » est un mot orienté qui fait penser aux archives de fichiers, alors que Jubako se veut généraliste : un conteneur Jubako pourrait être utilisé pour plein d’autres choses : empaquetage d’applications, pack de ressources dans un binaire, conteneur multimédia, etc.

Vous pouvez voir Jubako comme étant au stockage ce que XML est à la sérialisation. XML définit comment sérialiser du contenu (sous forme d’un arbre de nœuds avec des attributs) mais ne définit pas quels sont ces nœuds et attributs. Chaque cas d’usage a sa propre structure. Pour Jubako c’est pareil, il définit comment stocker des données dans un fichier « d’archive » mais il ne définit pas quelles sont ces données. Chaque cas d’usage aura sa propre structure de données.

Jubako et Arx sont sous licence MIT.

Sommaire

	Un peu de contexte

	Le format Jubako

	La bibliothèque Jubako

	
L’outil Arx
	Tar

	 Le format Arx

	
Un peu de comparaison
	Pour la partie documentation seulement (9194 entrées) :

	Pour la partie drivers seulement (33056 entrées) :

	Et pour les sources complètes (81958 entrées) :

	La taille

	Le temps de création

	Le temps d’extraction

	Le temps de listing

	Le temps de dumping

	Mount

	Utilisation mémoire

	Conclusion

Dans cette dépêche on présente Jubako, un méta-format de conteneur et la bibliothèque associée pour lire et écrire ce format, ainsi qu’Arx, un outil se basant sur Jubako pour faire des archives de fichiers, un peu comme tar mais en mieux différemment. La partie Jubako peut être un peu longue, si vous êtes plus intéressé par la finalité du Jubako, vous pouvez directement sauter à la partie Arx pour voir l’usage qui en est fait.

Un peu de contexte

Mon métier, c’est développeur logiciel, en tant qu’indépendant.

Mon client principal depuis six ans, c’est la fondation Kiwix pour qui je maintiens les outils de base de Kiwix, c’est-à-dire les outils bas niveau en C++ pour lire et créer les archives Zim (pour ce qui nous concerne ici).

Les archives Zim sont des archives de « contenu » qui pourraient s’apparenter à des zip, mais avec un format interne qui permet une meilleure compression tout en permettant un accès en lecture quasiment en random access.

Le format ZIM fonctionne bien, mais il souffre de quelques erreurs de jeunesse. À la base, ZIM c’est « Zeno IMproved », et Zeno… je sais pas trop d’où ça vient. Il y a bien tntzenoreader qui date de 2007. Mais s’il lit les fichiers Zeno, ce n’est pas lui a priori qui crée le format. (Soit dit en passant, c’est probablement la source de libzim vu que je reconnais pas mal de similitudes de code entre les deux projets). De mémoire, Zeno était associé à l’époque où la fondation Wikimedia parlait de mettre Wikipedia sur CD-ROM.

Enfin bon voilà, un peu de dette technique certes, mais surtout un format très orienté pour le cas d’usage de stocker des pages web. Par exemple, chaque entrée a obligatoirement une url, un titre et un mimetype.

Et puis un jour, celui qu’on ne nomme plus arriva avec son confinement généralisé. Durant cette période, j’ai commencé à travailler sur un nouveau format d’archive, inspiré du format ZIM mais avec comme objectif d’en faire un format généraliste qui pourrait être utilisé par d’autres projets.

Ainsi est né doucement le projet Jubako.

Le format Jubako

Le format Jubako est donc un format (binaire) de fichiers pour des conteneurs.

Jubako est un meta-format. Comme XML, il ne définit pas la structure de données à stocker. Ce sera donc au « Vendeur » (qui utilise Jubako dans son projet) de définir la façon dont les données seront stockées. Il est conçu avec le cas d’usage suivant : un conteneur « read-only » créé une fois et distribué à un ensemble d’utilisateurs qui vont lire le conteneur. La lecture du conteneur doit pouvoir se faire sur des machines de relativement faible puissance et en temps « quasi » constant sans décompression préalable. À l’inverse, il est attendu que la machine sur laquelle est fait le conteneur soit un peu plus puissante (ou tout du moins, qu’il soit accepté que la création prenne plus de temps).

Un conteneur Jubako est composé de plusieurs sous-parties appelées pack :

	Les contentPacks, qui contiennent les données proprement dites. Les contentPacks sont les plus gros en taille et contiennent les données « brutes », sans métadonnées. C’est un peu un conteneur de blob si on reprend la terminologie de git.

	Le directoryPack qui lui contient les entrées et métadonnées associées. C’est le pack le plus complexe et le plus « configurable ». Globalement, il stocke des entrées (Entry). Chaque entrée étant composée de métadonnées et pouvant pointer vers un, plusieurs ou aucun contenu (stocké dans les contentPacks).

	Le manifestPack qui relie tous ces différents packs ensemble pour former un tout cohérent.

Un conteneur Jubako est donc obligatoirement composé d’un manifestPack et d’un directoryPack et d’un ou plusieurs contentPacks (parfois aucun). Les packs peuvent être stockés séparément (sous forme de fichiers dans un dossier par exemple) ou concaténés ensemble pour ne former qu’un seul fichier.

Notez que si un conteneur est logiquement composé de plusieurs contentPack, il est normal que certains contentPack puissent être manquants lors de la lecture. Cela permet d’avoir un système d’extension de conteneur.

Par exemple, pour un packaging d’application, l’application elle-même pourrait être stockée dans un contentPack toujours présent mais les traductions dans différentes langues serait stockées dans des packs distincts. Le conteneur Jubako référence toutes les entrées (et donc toutes les traductions) mais un utilisateur peut avoir en local un conteneur qui contient seulement le contentPack « application » et la traduction dans sa langue.

Ou encore, le projet kiwix pourrait créer des archives avec les images dans des packs séparés, l’utilisateur téléchargerait des archives « sans » images. Et lorsqu’il a une bonne connexion, télécharge les packs manquants.

Bien sûr, c’est au vendeur de faire en sorte que son application sache quoi faire si un pack est manquant (planter, afficher un joli message d’erreur, proposer à l’utilisateur de télécharger le pack…)

Pour ce qui est des entrées stockées dans le directoryPack, c’est là aussi au vendeur de les définir. Le format des entrées est fixe pour chaque cas d’usage (ou alors il vous faudra gérer de la compatibilité entre les versions).

Pour permettre à Jubako (le lecteur, pas le format) de lire le conteneur, le format des entrées est stocké dans le conteneur lui-même.

Le schéma de données suit le principe suivant :

	Plusieurs types d’entrées peuvent être stockés dans un seul conteneur. Elles sont stockées (et peuvent être récupérées) séparément. Cela permet par exemple de séparer les données selon leur signification dans le conteneur. Par exemple, les fichiers stockés dans une archive de fichier versus les métadonnées de cette même archive (auteur, date de création…).

	Un type d’entrée est composé d’un ou plusieurs variants. C’est l’équivalent d’une union pour celles et ceux qui font du c/c++. Par exemple, le type des entrées dans une archive de fichier sera composée de trois variants Fichier, Dossier, Lien.

	Chaque variant est composé d’un ensemble d’attributs (l’équivalent d’un struct en c/c++). Chaque attribut a un type défini (entier signé, non signé, tableau de données (de taille fixe ou non), identifiant de contenu), ce qui permet à Jubako de savoir comment lire ces attributs.
Vous noterez que l’identifiant de contenu n’est qu’un attribut parmi d’autres. Une entrée peut donc pointer sur plusieurs contenus, ou aucun.

Chaque variant a sa propre structure, mais il est tout de même conseillé d’avoir des attributs communs entre les variants pour pouvoir faire de la recherche d’entrées basée sur ces attributs.

Toutes les entrées d’un même type sont stockées ensemble dans un sous conteneur (tableau) appelé EntryStore. Comme toutes les entrées ont la même taille, les attributs de taille variable sont déportés dans un ValueStore.

Enfin, des index permettent de pointer sur un sous-ensemble d’entrées dans un EntryStore en particulier. Ces index sont nommés et sont les points d’entrées pour la lecture des conteneurs.

Une application va identifier l’index dont elle a besoin et va « suivre » le fil de la structure de donnée pour lire les entrées et accéder au contenu.

Il y a encore pas mal de choses spécifiées (plus ou moins) telles que des redirections ou des entrées qui étendent (rajoutent des attributs) à d’autres entrées. Mais d’une part, cette présentation est déjà bien trop longue et d’autre part, c’est pas encore implémenté, donc on verra plus tard si vous le voulez bien.

La bibliothèque Jubako

Il s’agit de l’implémentation de référence (et unique, pour le moment) pour le format Jubako.

Elle est écrite en Rust parce que c’est à la mode c’est un des rares langages (à ma connaissance) qui soit en même temps de bas niveau (comme le C) et qui fournisse aussi des structures de haut niveau dans sa bibliothèque standard (comme le Python). Qui plus est, il fournit un certain nombre de garanties dans sa gestion mémoire qui permet d’avoir une certaine confiance sur un sujet aussi complexe/sensible que de générer/lire des fichiers binaires. (Ça n’empêche pas les bugs, je vous le garantis aussi :))

(Je me devais de vous dire dans quel langage était écrit Jubako, mais ce n’est pas le plus important. Oui je sais qu’il y a plein de langages de qualité qui auraient pu être utilisés.)

Je ne vais pas trop m’étendre sur cette partie, l’API de la bibliothèque est pas encore sèche et la doc est inexistante pour le moment. Mais voici quand même un petit aperçu de la création et lecture d’un conteneur Jubako :

(Vous noterez une petite incohérence entre le nom des fonctions et des variables/définitions du format. C’est qu’en écrivant cette dépêche, je me suis rendu compte que la terminologie n’était pas bonne. J’ai écrit la dépêche avec une terminologie modifiée mais le code est encore avec « l’ancienne ».)

use jubako as jbk;
use jbk::reader::EntryTrait;
use std::error::Error;
use std::rc::Rc;
use typenum::{U31, U40, U63};

// Cela vous permettra de différencier votre conteneur parmi la multitude de conteneurs jubako qui seront créés (oui, oui, j’y crois)
const VENDOR_ID: u32 = 0x01_02_03_04;

fn main() -> Result<(), Box<dyn Error>> {
 let mut content_pack = jbk::creator::ContentPackCreator::new(
 "test.jbkc",
 jbk::Id(1), // L’id du pack tel que référencé dans le reste du conteneur
 VENDOR_ID,
 jbk::FreeData::<U40>::clone_from_slice(&[0x00; 40]), // Mettez ce que vous voulez, c’est pour vous
 jbk::CompressionType::Zstd, // L’algo de compression à utiliser
);
 content_pack.start()?;

 let mut directory_pack = jbk::creator::DirectoryPackCreator::new(
 "test.jbkd",
 jbk::Id(0),
 VENDOR_ID,
 jbk::FreeData::<U31>::clone_from_slice(&[0x00; 31]),
);

 // Les entrées ont une taille fixe. Donc pour les valeurs de taille variable (chaînes de caractères), il nous faut un stockage particulier
 let value_store = directory_pack.create_key_store(jbk::creator::KeyStoreKind::Plain);

 // On definit une entrée composée de deux variants
 let entry_def = jbk::creator::Entry::new(vec![
 jbk::creator::Variant::new(vec![
 jbk::creator::Key::PString(0, Rc::clone(&value_store)), // Une chaîne de caractères, à stocker dans value_store
 jbk::creator::Key::new_int(), // Un entier
 jbk::creator::Key::ContentAddress, // Un "pointeur" sur du contenu.
]),
 jbk::creator::Variant::new(vec![
 jbk::creator::Key::PString(0, Rc::clone(&value_store)),
 jbk::creator::Key::new_int(), //
 jbk::creator::Key::new_int(), //
]),
]);

 // Le store qui contiendra nos entrées.
 let entry_store_id = directory_pack.create_entry_store(entry_def);
 let entry_store = directory_pack.get_entry_store(entry_store_id);

 // On ajoute le contenu de notre entrée :
 let content: Vec<u8> = "Du super contenu de qualité pour notre conteneur de test".into();
 let mut reader = jbk::creator::BufStream::new(content, jbk::End::None);
 let content_id = content_pack.add_content(&mut reader)?;
 entry_store.add_entry(
 0, // On utilise le variant 0
 vec![
 jbk::creator::Value::Array("Super".into()),
 jbk::creator::Value::Unsigned(50),
 jbk::creator::Value::Content(jbk::creator::Content::from((
 jbk::Id(1), // L'id de notre pack
 content_id, // L'id du contenu dans le pack
))),
],
);

 entry_store.add_entry(
 1, // On utilise le variant 1
 vec![
 jbk::creator::Value::Array("Mega".into()),
 jbk::creator::Value::Unsigned(42),
 jbk::creator::Value::Unsigned(5),
],
);

 entry_store.add_entry(
 1, // On utilise le variant 1
 vec![
 jbk::creator::Value::Array("Hyper".into()),
 jbk::creator::Value::Unsigned(45),
 jbk::creator::Value::Unsigned(2),
],
);

 // On créé un index qui nous permettra de retrouver nos entrées.
 directory_pack.create_index(
 "mon petit index a moi",
 jubako::ContentAddress::new(0.into(), 0.into()), // Un pointeur vers du contenu qui peut servir à stocker ce que vous voulez. (Rien en l’occurrence ici)
 0.into(), // Notre index n'est pas trié
 entry_store_id,
 jubako::Count(3), // On a trois entrées
 jubako::Idx(0), // Et on commence à l'offset 0 dans le entry_store.
);

 let directory_pack_info = directory_pack.finalize()?;
 let content_pack_info = content_pack.finalize()?;
 let mut manifest_creator = jbk::creator::ManifestPackCreator::new(
 "test.jbkm",
 VENDOR_ID,
 jbk::FreeData::<U63>::clone_from_slice(&[0x00; 63]),
);

 manifest_creator.add_pack(directory_pack_info);
 manifest_creator.add_pack(content_pack_info);
 manifest_creator.finalize()?;

 // Vous avez maintenant 3 fichiers "test.jbkm", "test.jbkc" et "test.jbkd".
 // N'en faisons qu'un seul
 jbk::concat(&["test.jbkm", "test.jbkc", "test.jbkd"], "test.jbk")?;
 // On a maintenant un 4ème fichier "test.jbk" qui contient les trois autres.

 // Un peu de lecture
 let container = jbk::reader::Container::new("test.jbkm")?; // ou "test.jbkm"
 let directory = container.get_directory_pack()?;
 let index = directory.get_index_from_name("mon petit index a moi")?;
 let resolver = directory.get_resolver(); // C'est nécessaire pour retrouver les infos dans value_store
 let finder = index.get_finder(Rc::clone(&resolver)); // On va enfin pouvoir lire nos données.

 let entry = finder.get_entry(jbk::Idx(0))?;
 assert_eq!(entry.get_variant_id(), 0); // On a bien le variant 0
 assert_eq!(
 resolver.resolve_to_vec(&entry.get_value(0.into())?)?,
 Vec::from("Super")
);
 assert_eq!(
 resolver.resolve_to_unsigned(&entry.get_value(1.into())?),
 50
);
 let value_2 = entry.get_value(2.into())?;
 let content_address = resolver.resolve_to_content(&value_2);
 // On affiche le contenu sur la sortie standard
 let reader = container.get_reader(content_address)?;
 std::io::copy(
 &mut reader.create_stream_all(),
 &mut std::io::stdout().lock(),
)?;

 let entry = finder.get_entry(jbk::Idx(1))?;
 assert_eq!(entry.get_variant_id(), 1); // On a bien le variant 1
 assert_eq!(
 resolver.resolve_to_vec(&entry.get_value(0.into())?)?,
 Vec::from("Mega")
);
 assert_eq!(
 resolver.resolve_to_unsigned(&entry.get_value(1.into())?),
 42
);
 assert_eq!(resolver.resolve_to_unsigned(&entry.get_value(2.into())?), 5);

 let entry = finder.get_entry(jbk::Idx(2))?;
 assert_eq!(entry.get_variant_id(), 1); // On a bien le variant 1
 assert_eq!(
 resolver.resolve_to_vec(&entry.get_value(0.into())?)?,
 Vec::from("Hyper")
);
 assert_eq!(
 resolver.resolve_to_unsigned(&entry.get_value(1.into())?),
 45
);
 assert_eq!(resolver.resolve_to_unsigned(&entry.get_value(2.into())?), 2);

 Ok(())
}

L’outil Arx

Jubako c’est beau, mais franchement une lib… t’as pas mieux ? Un vrai cas d’usage ?

Si ! Et c’est Arx, un outil pour faire des archives de fichiers un peu comme Tar ou Zip. Et en plus, ça sert de démonstrateur pour Jubako.

Tar

Petite digression sur tar. Surtout si vous ne savez pas comment est structurée une archive tar.

Tar c’est vieux, très vieux (1979). Ça date d’une époque où les disquettes 3.5 étaient une révolution (elles apparaissent en 1982)

Une archive tar, c’est des entrées (header + contenu) mises bout à bout. C’est tout.

Un tar.gz, c’est un tar compressé avec gzip. Voilà.

Un tar ça marche bien pour du « streaming ». On crée l’archive simplement en parcourant le dossier à archiver et écrivant les entrées dans un « flux » (la sortie standard par exemple) dès qu’on les lit. On passe le flux à gzip et voilà.

Pour décompresser on fait l’inverse.

Et, comme on compresse toute l’archive « par l’extérieur », c’est probablement là qu’on a les meilleurs ratios de compression.

Par contre… accéder à une entrée en particulier… Ben il faut parcourir toute l’archive pour trouver l’entrée. Et pour parcourir toute l’archive, il faut la décompresser. Et ça prend du temps.

 Le format Arx

Il n’y a qu’un seul type d’entrée dans Arx et il est composé de trois variants :

	Fichier

	Dossier

	Lien symbolique

Pour le moment, aucune méta-donnée sur les fichiers n’est stockée. Donc pas de owner, group, droit d’accès ou attributs étendus. Il vous faudra attendre un peu pour ça :) ARX utilise une structure en arbre. Chaque dossier pointe vers un « range » d’entrées qu’il contient. Chaque entrée (y compris les dossiers) contient l’id de son dossier parent. Le nom des entrées est le « basename ». On ne stocke pas tout le chemin de l’entrée.

Cette structure en arbre permet d’accélérer la recherche d’entrée puisqu’on n’a pas besoin de faire une recherche « linéaire » sur toutes les entrées. Cela permet aussi de gagner de la place puisqu’on ne stocke pas le chemin complet. En contrepartie, trouver le chemin complet à partir d’une entrée nécessite de remonter tous ses parents. Mais c’est un cas de figure assez rare.

L’outil arx est relativement simple et permet cinq opérations :

	créer une archive à partir d’un ou plusieurs dossiers/fichiers,

	extraire une archive dans un dossier,

	lister les entrées dans une archive,

	dumper (j’ai pas de traduction française) une entrée d’une archive,

	monter l’archive dans un point de montage.

Le code d’arx est assez simple (pour le moment). Il y a sept fichiers qui ne dépassent pas les 500 lignes de code chacun. Je vous invite vivement à aller le voir.

Un peu de comparaison

Mais du coup, arx, ça vaut quoi par rapport à tar ?

Faisons donc un peu de tests. Pour tester arx, j’ai utilisé les sources du kernel Linux (on est sur linuxfr ou pas ?). J’en ai fait trois cas de test différents:

	Les sources au complet

	Le dossier Documentation seulement

	Le dossier drivers seulement

De plus, arx utilise zstd comme algo de compression. Donc pour éviter de comparer des pommes avec des poires, il faut comparer à un tar.zst, pas un tar.gz. Il y a bien une option chez tar pour compresser en utilisant zstd mais ça utilise pas la même config (niveau de compression) que arx, qui prend le parti de compresser au maximum au détriment du temps de compression. Du coup, l’archive tar.zst est faite avec : tar c linux-5.19 | zstd -19 -T8 -o linux.tar.zst. (niveau de compression 19, 8 threads).

Enfin, pour le contexte de test, les sources à compresser sont sur un SSD mais tout le reste c’est du tmpfs. Ce qui limite les entrées/sorties au minimum (mais en vrai ça change pas les ordres de grandeurs).

Voici les chiffres bruts, l’analyse arrive après :

Pour la partie documentation seulement (9194 entrées) :

	
	Taille
	Création
	Extraction
	Listing
	Dump
	Dump / entry
	Mount diff

	Source
	58 MB
	
	
	
	
	
	66ms

	Tar zstd
	7.8 MB
	8s3
	68ms
	51ms
	2m9s
	43ms
	2m38s

	Arx
	8.3 MB
	8s7
	100ms
	5ms
	8s9
	3.4ms
	324ms

	Ratios
	1.06
	1.05
	1.47
	0.1
	0.07
	
	0.002

Pour la partie drivers seulement (33056 entrées) :

	
	Taille
	Création
	Extraction
	Listing
	Dump
	Dump / entry
	Mount diff

	Source
	865 MB
	
	
	
	
	
	490ms

	Tar zstd
	73 MB
	1m7
	688ms
	570ms
	1h36
	520ms
	2h41m

	Arx
	80 MB
	3m25
	930ms
	19ms
	35s
	3.1ms
	1s75

	Ratios
	1.09
	3
	1.35
	0.03
	0.006
	
	0.00018

Et pour les sources complètes (81958 entrées) :

	
	Taille
	Création
	Extraction
	Listing
	Dump
	Dump / entry
	Mount diff
	Compilation

	Source
	1326 MB
	
	
	
	
	
	880ms
	32m

	Tar zstd
	129 MB
	1m37s
	1s130ms
	900ms
	6h20m
	833ms
	
	

	Arx
	140 MB
	4m45s
	1s47ms
	45ms
	1m28s
	4ms
	4s2
	48m

	Ratios
	1.08
	2.93
	1.3
	0.05
	0.0045
	
	
	

La taille

	Les sources décompressées du kernel font 1,3 Go.

	L’archive tar.zst fait 129 Mo. (Un ratio de compression de 9,76%).

	L’archive arx elle fait 140 Mo. (Un ratio de compression de 10,56%).

Arx compresse moins bien. On a environ 8 % d’écart entre les deux archives. On s’y attendait au vu des structures de chaque archive, mais perso je trouve pas ça dégueu. Surtout comparé au 1,3 Go d’origine. Et pour info, le tar.gz utilisé par tout le monde, fait 200 Mo et ça a pas l’air de gêner grand monde alors bon, 140 Mo, ça va.

Le temps de création

La création de l’archive kernel.tar.zst se fait en 1m37s alors que l’arx se fait en 4m45s. Sans surprise ici, tar est bien plus rapide. On a globalement un rapport de 3 entre les temps de création. C’est en accord avec le cas d’usage de Jubako (temps de création plus lent, mais exploitation plus rapide) mais la création est probablement la partie la moins optimisée pour le moment. Il devrait être possible d’améliorer les perfs du côté de Jubako pour limiter l’écart (notamment compresser les contenus en parallèle).

Le temps d’extraction

Le temps d’extraction se fait dans des temps relativement similaires : 1s1 pour tar et 1s5 pour arx. Là aussi, c’est en accord avec la structure des données des deux formats. Tar n’a qu’un seul flux à décompresser. Alors que Jubako doit parcourir les entrées et doit ensuite décompresser plusieurs flux internes (avec tout le temps d’initialisation associé). Mais, là encore, il y a probablement matière à amélioration du côté de Jubako/arx.

Le temps de listing

Ici on n’extrait pas le contenu, mais on liste les fichiers dans l’archive. Il faut 10 à 20 fois moins de temps à arx pour lister le contenu de l’archive par rapport à tar. Là aussi, c’est cohérent avec la structure de données des deux formats. Jubako n’a aucun contenu à décompresser et il n’a que le directoryPack à lire, alors que tar doit décompresser toute l’archive.

On commence à toucher à des cas d’usage pour lesquels Jubako a été conçu : accéder aux données sans extraire toute l’archive.

Le temps de dumping

Par dumping j’entends extraire un seul fichier en particulier d’une archive.

Le cas de test est d’extraire un fichier sur trois de l’archive.

Pour le kernel au complet, ça veut dire extraire 27319 fichiers de l’archive (et donc lancer 27319 fois tar/arx)

Il faut 1m30 à arx pour faire le travail. Du côté de tar il faut… 6h20.

Ça fait une moyenne de 4ms par entrée du côté d'arx et 0,8s pour tar.

C’est un ratio de 200 !!

Si on réduit la taille des archives (ce qui limite la quantité de données à décompresser pour tar), le ratio baisse un peu, mais on reste quand même avec arx 12 fois plus rapide que tar pour la documentation. (3064 fichiers à dumper)

On voit ici clairement l’avantage de Jubako sur tar. C’est prévisible, rien de magique, on travaille juste avec un format de fichier fait pour ça, c’est normal que ça dépote.

Cela met aussi en évidence le fait qu’arx met un temps relativement constant pour extraire un fichier, quelle que soit la taille de l’archive.

À l’inverse pour tar, les temps d’extraction augmentent avec la taille des archives.

Mount

Un mount tout seul ne prend pas de temps, il faut voir quand on veut lire les fichiers. Le test correspond donc à un mount suivi d’un diff -r entre ce qui a été monté et les sources d’origine. C’est le temps de diff qui est mesuré. L’archive tar est montée avec l’outil archivemount.

Bon, là c’est clair, arx est bien bien bien plus rapide que tar : un diff sur une archive arx monté est de 490 à 5500 fois plus rapide qu’un diff sur une archive tar. (Je n’ai pas osé faire le test sur le kernel complet, mais je vous laisse le faire si vous voulez). On notera quand même que le diff prend quatre à cinq fois plus de temps qu’un diff simple entre deux dossiers (sans mount).

Mais diff, c’est un cas vachement particulier, on parcourt certes tous les fichiers, mais c’est assez séquentiel et on y accède qu’une seule fois. Ça donnerait quoi avec un vrai cas d’usage ?

Du coup, compilons un kernel…

La compilation du kernel simplement (configuration par défaut, make -j8, les sources extraites dans le fs, sur sdd) prend 32 minutes sur ma machine. La même compilation mais sur une archive montée (archive elle-même stockée sur le sdd, pas dans tmpfs) prend 48 minutes. Alors oui, ça prend 1,5 fois plus de temps, mais sachez que l’implémentation actuelle de arx mount est mono-threadée, donc le make -j8 en prend un coup de base. Mais vous n’avez utilisé que 140 Mo d’espace disque au lieu de 1,3Go pour stocker les sources du kernel.

Utilisation mémoire

Niveau utilisation mémoire, Jubako est, normalement, relativement sobre.

La partie index (stockée dans le directoryPack) est directement exploitable par Jubako. Rien n’est compressé et Jubako est conçu pour lire directement les données stockées dans le fichier. Bien sûr, ça engendre beaucoup d’I/O et c’est donc au détriment des performances. Pour réduire ça, différentes stratégies sont utilisées (bufferisation, mmap, cache…). Mais dans un contexte vraiment limité en mémoire, c’est désactivable (sur le principe, il y a pas vraiment d’options aujourd’hui dans l’implémentation). De toute façon, le directoryPack de l’archive de l’ensemble des sources du kernel fait 2 Mo. Donc on pourrait tout mettre en ram sans que ça ne pose de problème.

Au niveau des données compressées, ça nécessite un peu plus de données. Les données sont regroupées en « clusters » et les clusters sont compressés indépendamment. Donc pour accéder à un contenu, il faut décompresser au pire un cluster entier. L’implémentation actuelle crée des clusters de 4 Mo maximum. Donc sans cache, accéder à un contenu couterait 4 Mo max (plus les structures internes utilisées par les algorithmes de (dé)compression).

En pratique, il y a du cache mis en place (et pas obligatoirement de la manière la plus optimisée). Jubako fait de la décompression partielle : il commence à décompresser un cluster jusqu’aux données auxquelles on veut accéder. Mais pour éviter de décompresser à nouveau le début du cluster plus tard, on garde en mémoire le contexte de décompression en mémoire. Donc chaque cluster a certes 4 Mo maximum, mais on garde plus en mémoire. Et actuellement, on a un cache de 20 clusters en mémoire. Donc environ 80 Mo plus les 20 contextes de décompression (et je n’ai pas mesuré leur taille).

Au global, un arx mount pendant une compilation de kernel consomme 310 Mo au maximum (Maximum resident size). Il y a un peu de travail d’implémentation et d’ajustement pour avoir le meilleur compromis mémoire utilisée/performance. Et probablement de la configuration nécessaire pour s’adapter aux différents cas d’usage.

Conclusion

Voilà pour une première présentation de Jubako et Arx.

On est loin d’avoir un produit fini. Les specs de Jubako ne sont pas complètes. L’implémentation n’implémente pas tout ce qui est spécifié (et la spec risque de va changer avec l’implémentation).

La bibliothèque Jubako elle-même est encore très jeune. Elle fonctionne, mais elle n’est probablement pas exempte de bugs, l’api est à améliorer, sans parler des performances.

Pour ce qui est de Arx, là aussi on en est au début. Arx stocke très peu de métadonnées sur les fichiers pour le moment, mais c’est une base et elle sert de très bon démonstrateur pour Jubako.

La différence entre ce qui est perdu (taille de l’archive, temps de compression) et ce qui est gagné (utilisation d’une archive sans la décompresser entièrement) est plus que raisonnable pour moi (surtout pour une première version).

Il y a encore pas mal de choses à faire mais c’est un premier jalon important pour moi de voir un projet imaginé il y a maintenant deux ans prendre forme et arriver à un résultat assez probant. (J’ai d’ailleurs eu du mal à me restreindre à faire une dépêche courte, j’en suis désolé… ou presque).

Jubako et Arx peuvent avoir leur utilité dans des cas d’usage particuliers. Pour ce qui est de la classique archive de fichiers qui sera extraite, il est fort probable que tar reste la référence. Mais Jubako ouvre une porte sur de toutes nouvelles façons de faire. Il serait possible de diffuser du contenu et de le lire sans le décompresser. Imaginez un peu :

	Une distribution Linux basée sur Jubako pour ses paquets. Des paquets qui ne seraient jamais décompressés mais montés à la demande…

	Un système de sauvegarde (une sauvegarde incrémentale ne serait qu’une archive Jubako qui réutilise le contentPack des sauvegardes précédentes)…

	Si python savait lire des archives Jubako…

	Si on diffusait nos sites web statiques à coup de conteneur Jubako (ou de serveurs autonomes qui contiennent des conteneurs Jubako sous forme de ressources intégrées) …

	Si les navigateurs web savaient lire du Jubako et qu’on packageait nos applis JavaScript à coup de Jubako…

Comment ça je m’emballe ?!

Aller plus loin

	
Les spécifications de Jubako
(117 clics)

	
Les sources de la bibliothèque Jubako
(87 clics)

	
Les sources de l'outil d'archivage Arx
(97 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

