

La version 4.8 du compilateur GCC est disponible

Posté par patrick_g (site web personnel) le 25 mars 2013 à 08:47.
Édité par GeneralZod, Quentin Pradet, Sylvestre Ledru, claudex, thoasm, Benoît Sibaud, rewind, rootix et lamiricore.
Modéré par Pierre Jarillon.
Licence CC By‑SA.

Étiquettes :

	fortran

	ada

	gcc

	richard_stallman

	objective-c

	linus_torvalds

[image: GNU]

La nouvelle version majeure du compilateur GCC du projet GNU vient de sortir.

Écrit à l'origine par Richard Stallman, le logiciel GCC (GNU Compiler Collection) est le compilateur de référence du monde du logiciel libre. Il accepte des codes source écrits en C, C++, Objective-C, Fortran, Java et Ada et fonctionne sur une multitude d'architectures.

Dans la suite de la dépêche, vous pourrez découvrir les nouveautés et les optimisations mises en œuvre dans cette version 4.8 de GCC

Sommaire

	
Refonte du code

	
Améliorations générales

	
C et dérivés

	
C++

	
Architectures

	
Portage vers GCC 4.8

	
Suivre le développement de GCC

Refonte du code

GCC 4.8 est la première version stable développée en C++, opération qui s'inscrit dans le cadre de l'effort pour rendre le code de GCC plus compréhensible et plus facile à maintenir.

Néanmoins tout n'est pas permis puisque, selon les développeurs, une utilisation de toutes les fonctions de C++ pourrait dégrader la lisibilité. Seul un sous-ensemble de C++ est utilisé afin de réellement simplifier le code. Le sous-ensemble de C++ choisi rend donc le code plus clair et plus abordable pour les nouveaux contributeurs. Trois exemples illustrent les modifications effectuées :

	des conteneurs C++ standards (tels que std::vector ou std::unordered_map) sont préférés aux équivalents idiosyncrasiques de GCC ;

	l'utilisation raisonnée de templates implique un typage plus strict et un code plus sûr, ce qui n'était pas possible avec le préprocesseur utilisé en C ;

	une partie du travail du ramasse-miettes de GCC peut être remplacée par les smarts pointers C++ ou des pools mémoire.

Pour ces différents cas de figures et quelques autres, Ian Taylor a présenté des cas concrets de conversion en C++ de code GCC, ce qui met en évidence les bénéfices d'une telle opération.

Améliorations générales

Deux outils originellement développés par Google pour Clang ont été intégrés à GCC :

	Address Sanitizer (ASan): un détecteur d'erreur d'accès mémoire rapide. Activable avec le switch -fsanitize=address, il permet de détecter des erreurs telles que :

	accès à une zone mémoire après libération

	heap/stack/global buffer overflow

	ThreadSanitizer (TSan): outil basé sur valgrind (équivalent à Hellgrind) qui détecte les accès concurrents à une ressource (data race condition). Activable avec le switch -fsanitize=thread.

Une nouvelle optimisation expérimentale permet de mieux paralléliser les boucles de code. Cette optimisation s'active via -floop-nest-optimizeet l'algorithme utilisé se base sur l'outil PLUTO qui, au vu des comparaisons disponibles sur le site, semble très prometteur.

Un autre niveau d'optimisation, activable avec -Og, permet de compiler rapidement le code source tout en conservant un maximum d'informations permettant le déboguage. Selon Richard Guenther c'est ce niveau qui est à privilégier lors du développement du code avant tout à la fin, d'optimiser plus radicalement avec -O2 ou -O3.

C et dérivés

	Amélioration des diagnostics (GCC revient au niveau de clang):

	Lors d'une erreur ou d'un warning, la portion fautive est soulignée avec le symbole ^ indiquant la colonne.

	Les macros sont étendues lors d'une erreur les impliquant.

	-pedantic est déprécié, il faut maintenant lui préférer -Wpedantic.

	Suite à une remarque de Linus Torvalds sur l'utilité de -Wshadow, les variables locales cachant des fonctions ne déclenchent plus de warning.

C++

	introduction de la version 7 de l'ABI C++ (la version 2 reste par défaut)

	amélioration du support de C++11

	héritage de constructeur: on peut explicitement demander d'importer les constructeurs de la classe mère. Néanmoins, il faut faire attention au cas où on rajoute une nouvelle variable membre.

// cas 1
struct Base { Base(int); };

struct Derived : Base {
 using Base::Base; // importe Base::Base(int)
 Derived(double); // ajoute un nouveau constructeur
};

// cas 2
struct Base { Base(int); };

struct Derived : Base {
 using Base::Base;
 Derived(double);

 int x; // KO: n'existe pas dans Base et n'est donc pas initialisé
};

// cas 3
struct Derived : Base {
 using Base::Base;
 Derived(double);

 int x{0}; // OK: toujours initialisé en utilisant la syntaxe d'initialisation uniforme
};

	support complet du modèle mémoire de C++11 qui garantit qu'un accès à une zone mémoire est sûr en lecture ou sinon requiert l'acquisition d'un verrou

	support du thread-local storage avec l'implémentation du mot clé thread_local

	introduction du switch -std=c+1y qui permet de tester les fonctionnalités prévues dans la prochaine norme C++17. Actuellement, une seule fonctionnalité est implémentée, il s'agit de la déduction du type de retour pour les fonctions (c'est l'équivalent de auto, introduit avec C++11, pour les variables)

Architectures

GCC 4.8 supporte maintenant la version 64 bits de l'architecture ARM. Cette version est un port séparé par rapport à ARM 32 bits parce que la nouvelle architecture a été largement refondue et nettoyée (voir l'excellente analyse de RealWorldTech).

Toujours concernant AArch64, un support initial pour les implémentations des Cortex-A53 et Cortex-A57 est disponible avec les options -mcpu=cortex-a53 et -mcpu=cortex-a57.

Portage vers GCC 4.8

Cette version de GCC introduit en plus des changements mentionnés plus hauts des corrections qui peuvent empêcher des projets existants de compiler. La plupart de ces changements sont de simples warnings qui peuvent se transformer en erreurs quand ils sont combinés avec -Werror :

	-Wmaybe-uninitialized détecte de nouveaux cas de variables non-initialisées,

	-Wsizeof-pointer-access signale de nouveaux cas problématiques d'accès mémoire

	et -Wunused-local-typedefs invoque un warning quand un typedef local n'est pas utilisé en C++.

Un autre cas courant est la détection de comportements indéfinis (undefined behavior) grâce à des changements dans la façon de transformer les boucles.

Des développeurs ont recompilé la totalité des paquets de rawhide, la version de développement de Fedora, ce qui a permis de détecter quelques bugs dans GCC 4.8 mais aussi dans 67 des 11687 paquets, soit 0.6%.

Suivre le développement de GCC

Si vous voulez suivre le développement de GCC sans nécessairement vous plonger dans le détail des commits ou des annonces sur les listes de diffusion, un bon moyen est de suivre le blog de Nick Clifton. Ce développeur GCC propose presque chaque mois une synthèse des nouveautés de la chaine de compilation GNU.

Lire rétrospectivement les articles concernant GCC 4.8 permet de mieux mesurer tout le travail et les ajouts qui sont incorporés dans cette version :

	May 2012 GNU Toolchain Update

	July 2012 GNU Toolchain Update

	August 2012 GNU Toolchain Update

	October 2012 GNU Toolchain Update

	November 2012 GNU Toolchain Update

	December 2012 GNU Toolchain Update

	January 2013 GNU Toolchain Update

	February 2013 GNU Toolchain Update

	March 2013 GNU Toolchain Update

Aller plus loin

	
 Les nouveautés de GCC 4.8
(631 clics)

	
Porter son code vers GCC 4.8
(208 clics)

	
Site officiel
(189 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections18.png

