

Lazarus n’est pas mort \o/

Posté par Joris Dedieu (site web personnel) le 27 octobre 2012 à 21:27.
Édité par Davy Defaud, Amine "nh2" Brikci-Nigassa, baud123, Nÿco, claudex, olivierweb, Professeur Méphisto et maboiteaspam.
Modéré par rootix.
Licence CC By‑SA.

Étiquettes :

	pascal

	lazarus

	freepascal

	lcl

	objective-c

	fortran

	niklaus_wirth

[image: Technologie]

Ce n’est sans doute pas Niklaus Wirth, le père du Pascal, qui se retournera dans sa tombe. Le 28 août, Lazarus est passé en version 1 (puis 1.02).

Lazarus est un environnement de développement intégré permettant de programmer en Pascal objet en utilisant le compilateur Free Pascal et une bibliothèque de composants la LCL (Lazarus Component Library). Autrement dit, un clone libre de Delphi.

[image: Lazarus]

NdM : merci à olivierweb, baud123, Amine « nh2 » Brikci‐Nigassa, Professeur Méphisto, maboiteaspam et Nÿco pour avoir contribué à cette dépêche.

Sommaire

	
Du Pascal
	
Pascal-P et UCSD Pascal

	
Borland

	
Compilateurs libres

	
De Lazarus
	
Fonctionnalités
	
LCL

	
EDI

	
Avenir

Du Pascal

Le Pascal est un langage de programmation impératif, procédural, statiquement typé, créé en 1970 pour enseigner la programmation structurée. Il est normalisé par deux standards : ISO 71851:1990 et ISO 10206.

Pascal-P et UCSD Pascal

Si le Pascal a connu un certain succès, c’est avant tout grâce à la disponibilité de compilateurs, peu onéreux et portables. Tout commença en 1969. Niklaus Wirth, en spécifiant le langage, essaya d’implémenter un compilateur en Fortran. Ce à quoi il renonça vite. Finalement, son équipe à l’EPF de Zurich produit un tout premier compilateur pour les CDC 6000. Il y eut d’autres implémentations, mais c’est le compilateur Pascal-P (également implémenté à Zurich) qui, en 1973, fut le premier vrai grand succès. Indépendant de la plate‐forme, il générait du code portable (le P‐code) exécuté par une machine virtuelle. Ce qui le rendit particulièrement facile à porter (6502, 8080, Z80 et DEC PDP-11, entre autres).

À partir du Pascal-P2, l’UCSD a créé une implémentation très populaire. Elle ajoute les unités (unit) permettant de modulariser le code et un type String. La machine virtuelle, P-System prend de l’ampleur et est considérée comme un véritable système d’exploitation. Nous sommes en 1978. C’est notamment l’origine de l’Apple Pascal distribué avec les Apple II comme alternative au couple DOS‐BASIC. Une partie de Mac OS Classic restera écrite en Pascal jusqu’à la version 7 (1991).

Borland

En 1983, Borland commercialise pour un coût modeste le compilateur Turbo Pascal. Générant du code natif, celui‐ci est bien plus rapide que ses prédécesseurs. Il a rapidement raison de l’UCSD, et même Microsoft avec le Quick Pascal n’arrive pas à rivaliser. Au fil des versions, Borland étoffe ses outils. En 4 années et 4 versions, Turbo Pascal devient un véritable EDI. En 1989, la version 5.5 ajoute le support de la Programmation Orientée Objet. À la sortie de sa 8e version, le produit fut renommé Delphi, c’était en 1995.

Delphi apporte un renouveau du modèle objet, ainsi qu’une bibliothèque de composants réutilisables : la VCL. Il est créé dans l’optique de faire du développement rapide d’applications (RAD — Rapid Application Development). Avec Delphi, le Pascal de Borland perd sa portabilité. Malgré une tentative tardive et ratée d’un portage sous GNU/Linux (Kylix) basé sur Qt, il restera axé sur le développement pour Windows.

Compilateurs libres

Il existe au moins deux compilateurs Pascal libres. GNU Pascal, écrit en C, est un frontal pour GCC datant de 1988. Il offre un bonne prise en charge du standard et du Turbo Pascal 7, ainsi que quelques éléments de Delphi. Le projet semble être au point mort depuis quelque temps.

FreePascal est un projet d’une toute autre ampleur. Il a démarré lorsque Borland a annoncé que Turbo Pascal ne prendrait plus en charge MS-DOS. Florian Paul Klämpfl a alors entamé le développement d’un compilateur alternatif directement écrit en Pascal. Celui‐ci prend aujourd’hui en charge de nombreux systèmes (GNU/Linux, FreeBSD, Haiku, Mac OS X/iOS/Darwin, DOS, Win32, Win64, WinCE, OS/2, MorphOS, Nintendo GBA, Nintendo DS, et Nintendo Wii) et les architectures Intel x86, AMD64/x86-64, PowerPC, PowerPC64, SPARC, ARM et tout récemment MIPS, 68000 et ColdFire. Il sait compiler le code Turbo Pascal 7 et la plupart du code Delphi, ainsi que l’Objective-Pascal (pendant de l’Objective-C). FreePascal est sous licence GPL. Le moteur d’exécution — runtime — et les paquetages sont sous licence LGPL modifiée.

De Lazarus

[image: Lazarus]

Lazarus est donc un EDI libre (licence GPL) multi‐plate‐forme, au‐dessus de FreePascal, qui poursuit deux objectifs : être un équivalent de Delphi et permettre d’écrire du code portable — Write Once, Compile AnyWhere. Le projet a débuté en 1999. Il lui a donc fallu 13 ans pour atteindre la version 1.

Fonctionnalités

LCL

L’objectif de la bibliothèque est de fournir des composants portables. Un composant peut être un élément visuel (bouton, étiquette…) ou non (connexion vers une base de données, thread, timer…). Chaque élément de celle‐ci possède une implémentation utilisant différentes bibliothèques graphiques. Cela permet de produire du code natif pour la plate‐forme cible.

Actuellement Lazarus prend en charge GTK (obsolète), GTK2, Qt, win32 (32 et 64 bits), WinCE et Carbon. Il est donc possible de compiler votre projet dans toutes les déclinaisons de systèmes, de bibliothèques graphiques et architectures. Par exemple, Mac OS X / QT / amd64, Windows / Natif / i686, GNU/Linux / GTK / PowerPC. Ceci, bien entendu, si votre projet se limite aux composants pleinement pris en charge par toutes les cibles. Une page résume l’état des différents portages vers les différentes bibliothèques graphiques. Cela reste donc très dépendant de la nature du programme à compiler, mais l’effort de développement va dans ce sens. Il est également possible d’utiliser directement la bibliothèque graphique (le code n’est alors plus portable).

var
 GDIObject: PGDIObject;
 Bitmap: TBitmap;
 AImage: PGtkWidget;
begin
 ...

 GDIObject := PgdiObject(Bitmap.Handle);

 AImage := gtk_image_new_from_pixmap(GDIObject^.GDIPixmapObject,
 GDIObject^.GDIBitmapMaskObject);

 gtk_widget_show(AImage);

 gtk_container_add(GTK_CONTAINER(MyForm.Handle), AImage);
end;

La version 1 voit l’introduction de LCL-CustomDrawn. Cette bibliothèque devrait permettre de dessiner les composants graphiques avec un minimum de primitives natives, et donc d’être plus indépendant de la bibliothèque graphique sous‐jacente (mais forcement moins bien intégrée). C’est la première interface à prendre en charge Android. Elle est également disponible pour X11, Windows et Mac OS X (Cocoa). La prise en charge des iPhone est prévue.

uses lazcanvas, lclintf;

var
 MyLazCanvas: TLazCanvas:
begin
 if nctLazCanvas in LCLIntf.GetAvailableNativeCanvasTypes(MyCanvas.Handle) then
 begin
 MyLazCanvas := TLazCanvas(LCLIntf.GetNativeCanvas(MyCanvas.Handle, nctLazCanvas));
 // do something here with TLazCanvas
 end;

L’autre grande nouveauté est que la LCL est désormais considérée comme une bibliothèque quelconque et, à ce titre, est donc recompilée automatiquement au besoin. Cela facilite grandement le portage d’un projet sur des plates‐formes différentes.

Il y a également eu un grand nombre de corrections de bogues et d’améliorations qui sont détaillées dans les notes de version.

EDI

Dans la lignée de Delphi, il s’agit d’un RAD, autrement dit d’un outil permettant le développement d’applications par glisser‐déposer. L’interface est multi‐fenêtre (à la GIMP) et demandera donc un peu de réglage lorsqu’on utilise un gestionnaire de fenêtres pavant.

Elle connaît de nombreuses améliorations : réorganisation de certains menus, boîtes de dialogue plus cohérentes et généralement moins de questions. L’éditeur bénéficie d’un pliage de code — folding — amélioré, d’un enregistreur de macro et affiche le nom de la classe/procédure en train d’être éditée dans sa barre de titre. Le désassembleur peut désormais mettre en corrélation le code binaire et les sources. Il gère par ailleurs les points d’arrêt. Le débogueur subit bien d’autres améliorations : meilleur affichage des registres, meilleure gestion des threads, plus de journalisation des événements, point d’arrêt dans les données, etc.

Avenir

Clairement le prochain enjeu sera le portage des applications sur les plates‐formes mobiles, avec en particulier la prise en charge d’Android et le développement de LCL-CustomDrawn. La version 1.2 qui est dans les tuyaux apportera également son lot de corrections de bogues et toutes les nouveautés liées aux évolutions du compilateur.

Bref, comme depuis 13 ans, Lazarus avance doucement, mais sûrement, avec ses ressources limitées et ses fans. Sa communauté, qui s’organise autour d’un forum, produit du code et de la documentation à son rythme, suivant les bonnes volontés et les envies de chacun. Lazarus ne gagne pas vraiment de parts de marché, et n’en perd pas non plus. Il n’a pas l’ambition de remplacer Delphi demain, mais reste, par sa place dans l’histoire du Pascal, par sa longévité et son évolution constante, un parfait exemple de projet libre réussi.

Aller plus loin

	
L’annonce officielle
(259 clics)

	
Site du projet
(529 clics)

	
Site du compilateur Free Pascal
(103 clics)

	
Page du projet sur SourceForge
(41 clics)

	
Notes de version
(34 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/2ceb343c91c9e0908797847b92ecaef664fe664963da52c07788ecb1.png
Free Pascal

Lazarus

Once

Compile Anywhere

EPUB/bdb4da4f806533f2a3e55bf1366a0393ace66d6d16a3d48599b35a9e.png
File Edit Search View Project Run Package Tools Environment Window Help
)) 9% 193 | Standard | Additional | Common Controls | Dialogs | Misc | Data Controls | Data Access | System | Synedit | TMS GridPack | Holobit | GR32 | Mulog|«|>
SepPIEE|s FREawEF@me o BE=08E0E6
| Sedi: Tede A testorm @ ates_ 3
| Seanea T08 [-procedure Trornl.Buttoniclic Sender: TORJect); B
| Sed e 109 var.
(EEdit7: TEdIt 110 Item: TListItem;
- CEdits: TEdit 111 begin
rScnecsont: Thecke> Il 1371 Tuem :- Listviewl. Ttems. Insert (StrToIntDe (Bditl.Text, 0)):
e tcombon || 113|| Ttem-Caption i Format ('Item ta', (ListViewl.Items.Count]):
5 CheckBox2: TCheckBo1a 114 || end:
Al o
< : || 16 procedure 7
- ll 127 var
roperies | v 1 e |
Wame Ustvient)
Ownerdata | False 120 Item := Li
ParentColor False 121 Item.Free.
FParentfont True 122 | end; % ShowColumnHeaders.
Prentshow ue 123
Fopuptenu 124 | procedure T Soitcoumn 0
Readonly False. 125 [ovar
(adrly e 126| cotuan: T sorpestione_ <]
Scrolbars ssAutoBoth Lilbestn Viewsiyi (vaeport |~
[Showcin rue} 129 Column. Cag
e il e 130 Column. Ind
o Smalimages imagetist 130 || amt
Sortcolumn 0 7
SortType sthlone 133 | procedure TForml.Button4Click(Sender: TObject);
Satemages 138 | var.
Hborder 1 135|| cotumn: TListcolum:
labstop | e 136 begin =
ng o Cm— n
Toops e 135 36 |wodhed W Jiibfasarusexamplesstiwssstormpp
s
Viewsse _ vaRaport
N TS
Teonolvisble
Visil - ca he conolbe seer?
——
= - ‘@ linda@houston M Lazarus IDE v0 © i Object Inspector 1 Messages. 4 Listview test 4 Source Editor 1 -2 06.09.2009.

EPUB/imagessections50.png

