

Le gestionnaire de projet Python Poetry 1.0.0 est disponible !

Posté par Anonyme le 17 décembre 2019 à 13:18.
Édité par Benoît Sibaud, Davy Defaud, Xavier Teyssier et palm123.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	poetry

	gestionnaire_de_dépendances

	gestionnaire_de_projet_logiciel

	python

[image: Python]

L’outil de gestion de projet Python Poetry est sorti en version 1.0.0 ! Sa date de naissance est officiellement le jeudi 12 décembre 2019.

Poetry est un programme en ligne de commande permettant aux développeurs de gérer les métadonnées d’un projet, les dépendances, l’environnement de développement, la génération de livrables, la publication, l’environnement d’exécution et d’autres choses. Le tout de manière unifiée.

À l’origine du projet se trouve le Français Sébastien Eustace. À partir de cette version 1.0.0, le projet Poetry est géré par une équipe nommé sobrement python-poetry avec son propre site et sa propre organisation GitHub.

Sommaire

	Historique de la gestion de projet Python

	Ce qu’apporte Poetry dans l’univers Python

	Poetry propose un ensemble de fonctionnalités complet et clair

	Un projet qui a de l’avenir

Python a beaucoup d’héritage pour la gestion de projet : distutils, eggs, setuptools, easy_install, virtualenv, pip, wheel, pip-tools, twine, pipenv, etc. Cela fait beaucoup d’outils, qui se complètent, se succèdent avec plus ou moins de coopération. Petit rappel des besoins d’un développeur Python :

	définir les métadonnées du projet : nom, version, etc. ;

	définir le contenu du projet : code, ressources, docs ;

	définir les dépendances d’exécution et de développement ;

	figer les versions des dépendances, en respectant les incompatibilités ;

	isoler l’exécution du projet (en dév, en prod) avec un virtualenv et pyenv ;

	générer un livrable (du projet, de l’environnement) : source (.tar.gz) et binaire (.whl) ;

	publier ce livrable sur un dépôt public comme PyPI.

Historique de la gestion de projet Python

Voici une petite tentative de récapitulatif simplifié (!) de l’historique de la gestion de dépendances Python.

Au début, on ne génère que des sources avec un fichier setup.py, retenez‑le bien ! python setup.py install installe le projet. setup.py appelle distutils.setup. Charge aux distributions de faire des paquets binaires, de gérer les dépendances.

L’entreprise TeleCommunity apporte sa contribution : setuptools. Ce projet inclut : une surcouche extensible à distutils.setup, la commande easy_install pour télécharger et installer un projet et ses dépendances, le format egg inspiré du format JAR, un API pkg_resources pour inspecter l’installation de projets (métadonnées et fichiers ressources). Il reste des problèmes. Par exemple, on ne peut pas désinstaller un projet. Mais avec l’avantage du premier arrivé, l’adoption est massive.

Le prolifique Ian Bicking invente les virtualenvs et pip. Un virtualenv est un duo de dossiers site-packages et bin où sont installés des paquets Python. Quand on active le virtualenv, on injecte ces dossiers respectivement en début de PYTHONPATH et PATH. Cela évite de polluer ~/.local, ~/bin ou pire /usr/local/bin et /usr/bin.

pip est un remplaçant d’easy_install permettant — ô miracle — de désinstaller un paquet Python. pip coopère avec les virtualenvs. pip apporte une fonctionnalité intéressante : le fichier requirements.txt qu’on peut générer avec la commande pip freeze. Ce fichier contient la liste à plat de tous les projets à installer pour exécuter une application, en figeant la version de chaque projet. Cela facilite la création d’environnement reproductible avec pip.

pip n’a jamais adopté le format .egg d’easy_install, et execute systématiquement setup.py install. C’est long, provoque des erreurs. Certains setup.py sont compliqués, avec des dépendances pour le setup.py lui‑même. Mais comment dire à pip que pour exécuter setup.py, il faut telle version de setuptools voire pbr ou plus ?

Arrive wheel, un format d’archive pure : on ne fait qu’extraire des fichiers de métadonnées ou du projet, sans exécuter quoi que ce soit, pas même un postinst. wheel est un format binaire, on peut générer un livrable wheel pour différents systèmes d’exploitation et architectures matérielles.

Chaque projet se retrouve avec une ribambelle de fichiers qui s’allonge avec le temps : setup.py, MANIFEST.in, setup.cfg, requirements.txt, requirements-dev.txt, requirements.in, .python‑version, etc. sans compter les tox.ini, flake8.cfg et les incontournables README, AUTHORS, LICENSE, etc.

Le très controversé Kenneth Reitz propose Pipenv. Il s’agit d’un outil supplémentaire pour combiner virtualenv, pip et pip‑tools de manière opaque. Avec ce projet, on ajoute deux fichiers Pipfile et Pipfile.lock maintenus essentiellement par la commande pipenv. Kenneth arrive même à faire croire que Pipenv est le remplaçant officiel de pip.

À l’instar de package.json ou cargo.toml, la Python Package Authority (PyPA) ajout un nouveau fichier : pyproject.toml. Le but de ce fichier est de décrire les dépendances d’installation d’un projet. Par défaut, pip considère que c’est setuptools. De là, plusieurs alternatives sont nées : hatch et Poetry.

Ce qu’apporte Poetry dans l’univers Python

Dernier de la bande, Poetry permet d’étendre pyproject.toml pour en faire l’équivalent de package.json, cargo.toml, etc. Poetry ajoute un fichier poetry.lock et remplace effectivement les fichiers setup.py, setup.cfg, MANIFEST.in, requirements.txt et requirements-dev.txt. On peut éventuellement se passer de tox.ini également.

Poetry remplace aussi les commandes virtualenv, twine, wheel et pip-tools.

Le cœur de Poetry est un moteur de résolution de dépendances très pointu qui permet de trouver la meilleure solution pour satisfaire des contraintes parfois très complexes. pip fait un choix pragmatique et ne garantit pas de trouver l’ensemble de versions compatibles. Mieux vaut s’assurer qu’un déploiement est correct grâce à pip check. Poetry permet de fournir à pip un requirements.txt fiable que pip n’aura qu’à appliquer consciencieusement.

Poetry propose un ensemble de fonctionnalités complet et clair

Avant de vous noyer dans la documentation, voici un aperçu de ce que Poetry permet de faire :

	
poetry init initialise un projet en posant quelques questions sur les métadonnées fondamentales ;

	
poetry install initialise un virtualenv et y installe le projet et ses dépendances ;

	
poetry add et poetry remove permettent d’ajouter ou retirer des dépendances d’exécution ou de développement ;

	
poetry shell et poetry run exécutent du code dans le virtualenv du projet ;

	
poetry env permet de basculer d’une version de Python à l’autre ;

	
poetry version incrémente la version de votre projet selon la spécification SemVer ;

	
poetry build et poetry publish génère et téléverse les livrables d’un projet ;

	
poetry export génère un fichier requirements.txt pour alimenter pip ;

	
poetry update met à jour l’ensemble des dépendances en garantissant la compatibilité et en ajoutant les nouvelles sous‑dépendances.

Un projet qui a de l’avenir

La 1.0.0 est une version attendue avec, bien sûr, des compromis sur l’étendue des fonctionnalités. Néanmoins, beaucoup de projets peuvent désormais l’intégrer dans leurs chaînes de production.

L’ambition de Poetry est de répondre de manière unifiée au processus de gestion d’un projet Python depuis l’initialisation jusqu’à l’installation en production. Une étape importante pour son avenir sera l’intégration d’un système de greffons pour étendre Poetry lui‑même.

La popularité de Poetry explose en ce moment. Le projet est passé de 4 000 à 8 000 étoiles sur GitHub. Sur PyPI Stats, Poetry dépasse la barre des 10 000 téléchargements quotidiens hors miroirs. Deux ingrédients peuvent expliquer ce succès : une vision claire et complète du projet portée par Sébastien Eustace et un projet technique et communautaire porté humblement, sans problèmes d’égos.

Poetry est disponible et intégré dans de plus en plus de projets ou services comme CircleCI ou DepHell.

Poetry a certainement encore des erreurs de jeunesse : des cas d’usage non gérés, un manque de finition pour certains comportements, des erreurs ou des lenteurs. Néanmoins, l’efficacité d’un pyproject.toml et un README simple pour les collègues valent le détour.

En attendant, ne boudons pas notre plaisir ! C’est le moment d’utiliser Poetry pour gérer des petits projets et se faire la main sur un outil prometteur et déjà très agréable à utiliser !

Aller plus loin

	
Page du projet python-poetry.org
(493 clics)

	
Projet sur GitHub
(126 clics)

	
Historique de l’empaquetage de projet Python par PyPA
(49 clics)

	
Annonce officielle de Poetry 1.0.0
(41 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections41.png
python

powered

