

Le langage D

Posté par Jonathan MERCIER (site web personnel) le 09 juin 2012 à 16:19.
Édité par B16F4RV4RD1N, Bruno Michel, baud123, claudex, patrick_g, Benoît, lordblackfox, Amine "nh2" Brikci-Nigassa et NeoX.
Modéré par NeoX.
Licence CC By‑SA.

Étiquettes :

	fedora

[image: Technologie]

Le langage D est un langage extrêmement puissant et intuitif à l'utilisation. Nombre d'entre nous sommes au courant de l'existence de ce langage. Mais il reste pourtant mal connu. Par le biais de cette dépêche je vous propose de découvrir ou redécouvrir ce puissant langage.

[image: dlogo]

Sommaire

	
Présentation du langage

	
Quelques exemples de code
	
Bonjour paul

	
Une petite addition

	
Les conditions par l'exemple

	
Les tableaux
	
Les tableaux Dynamiques

	
Les tableaux statiques

	
Les tableaux associatifs

	
Les tableaux de types différents

	
Les tableaux de caractères

	
Répéter le code : Les boucles
	
La boucle Pour chaque (foreach)

	
La boucle Pour (for)

	
La boucle tant que (while)

	
Les structures de données
	
Les structures

	
Les classes

	
Pour aller plus loin
	
Un aperçu sur la parallèlisation

	
Une delegate pour la route (closure)
	
À la mode fonctionnelle

	
De façon non-fonctionnelle

	
Distributions linux conseillées pour le D

	
Mythes et légendes

Présentation du langage

Le D se veut adapté au monde moderne du programmeur. Pour cela il tend à combiner puissance de calcul et productivité, la performance d’exécution des langages compilés avec l'intuition des langages de script.

Je préfère vous prévenir une fois l'étape d’apprentissage du langage acquise, il est fortement possible que vous ne souhaitiez plus revenir en arrière.

Le D supporte plusieurs paradigmes, l'expérience a souvent montré que de se restreindre à un paradigme complique dans certains cas la réponse au problème donné.

	Orientée objet

	Fonctionnelle

	Concurentielle

	Impérative

	Metaprogrammation

Ainsi le développeur est mieux armé pour répondre aux différentes problèmatique.

Le langage D a pour devise :

« Si un langage peut récupérer 90 % de la puissance du C++ mais seulement 10 % de sa complexité, cela vaut largement le coup. »
— Walter Bright

Quelques exemples de code

À travers différents exemple de code nous allons vous montrer les bases du langage. L'objectif est d'être bref et de montrer quelques nouveautés facilitant la vie du développeur.

Bonjour paul

Le traditionnel bonjour.

import std.stdio;
void main (string[] args){
 writef("Bonjour: %s", args[1]);
}

L'instruction import indique ici que l'on souhaite utiliser des fonctionnalités définies dans le module stdio d'où provient la fonction writef.

Le programme commence a exécuter les instructions à partir de la fonction principale main. Cette fonction récupère ici les paramètres donnés via la ligne de commande.

La fonction writef va écrire sur la sortie standard le mot Bonjour suivi du premier mot donné via la ligne de commande.

$ ldc2 hello.d
$./hello paul
Bonjour paul

Une petite addition

À travers une opération simple qui est l'addition, nous allons découvrir comment écrire et utiliser les fonctions et les fonctions modèles (template).

import std.stdio;

@safe pure nothrow
size_t ajoutez(immutable size_t a, immutable size_t b = 0){
 return a + b;
}

void main (string[] args){
 size_t c = ajoutez(2 , 3);
 size_t d = ajoutez(2);
 size_t e = ajoutez(cast(size_t)2.3 , cast(size_t)3.3);
 writef(" 2 + 3 = %d | 2 + 0 = %d | 2.3 + 3.3 = %d", c, d, e);
}

$ ldc2 addition.d
$./addition
2 + 3 = 5 | 2 + 0 = 2 | 2.3 + 3.3 = 5

La fonction ajoutez prend deux paramètres de type entier positif et retourne une valeur de type entier positif. La fonction ajoutez tronque les valeurs décimales dues aux types utilisés. Si le second paramètre est omis il prendra par défaut la valeur 0.

En Bref :

	@safe indique que la fonction est sûre, devant suivre les règles décrites ici, il s'agit d'éviter des comportements indéfinis pouvant poser des problèmes de sécurité comme les cast de variable vers un pointeur, l'écriture de langage d'assemblage inline, le catch d'exception ne dérivant pas de la classe Exception …

	pure indique que :

	les mêmes paramètres donneront toujours le même résultat (si a vaut et b vaut 2, a+b sera toujours égale à 4) 2+2 est donc calculé une fois ; les autres fois il connaîtra le résultat sans calculer.

	Pas d'effet de bord en n'effectuant pas de modification d'état des variables comme a+=2

	nothrow indique que la fonction ne lève pas d'exception

	immutable les variables ne peuvent pas changer d'état.

import std.stdio;

T ajoutez(T,U)(T a, U b){
 return a + b;
}

void main (){
 double c = ajoutez(2.4 , 3);
 auto d = ajoutez(2 , 3);
 writefln("2.4 + 3 = %f", c);
 writefln("2 + 3 = %d", d);
}

$ ldc2 addition2.d
./addition2
2.4 + 3 = 5.4
2 + 3 = 5

Afin de pouvoir adapter dynamiquement la fonction ajoutez aux types donnés en paramètre et ainsi éviter d'écrire plusieurs fonctions combinant toutes les possibilités, on utilise les fonctions template.

Le D est capable de déterminer automatiquement le type des variables retournées, on peut ainsi utiliser le mot clé auto en lieu et place du type.

Les conditions par l'exemple

 string a = "bonjour";
 if(a == "coucou")
 writeln("ok");
 else if(a == "bonjour")
 writefln("%s", a);
 else
 writeln("raté");

Si la variable a est égale à coucou on écrit sur la sortie standard ok.

Sinon si a est égale à bonjour on écrit sur la sortie standard bonjour.

Sinon pour tous les autres cas on écrit sur la sortie standard raté.

Note : Les blocs ne contenant qu'une seule instruction sont dispensés des accolades {} . Ceci est vrai pour les conditions et les boucles.

 string a = "bonjour";
 switch(a){
 case "coucou": writeln("ok"); break;
 case "bonjour": writefln("%s", a); break;
 default: writeln("raté");
 }

Ce bout de code fait exactement pareil que la suite if, else if, else précédente.

Les tableaux

Les tableaux Dynamiques

size_t[] tab = new size_t[](5); // tableau dynamique de taille 5
size_t[] tableau = [0, 1, 2]; // tableau dynamique d'entier positif
tableau.length; // retourne la taille de 3
tableau[0]; // Accède au premier élément du tableau
tableau[3]; // erreur le tableau contient 3 éléments en partant de 0
tableau.length = tableau.length + 1; // augmente la taille du tableau
tableau[3] = 3; // Assigne la valeur de 3 en 4ème position

Les tableaux statiques

size_t[3] tableau = [0, 1, 2]; // Tableau statique d'entier positif
tableau.length; // Retourne la taille de 3
tableau[0]; // Accède au premier élément du tableau
tableau[3]; // Erreur le tableau contient 3 éléments en partant de 0
tableau.length = tableau.length + 1; // Erreur on peu pas augmenter
 // la taille d'un tableau statique

Les tableaux associatifs

 size_t[string] catalogue; // la clé est une chaine de caractère,
 // la valeur un entier positif
catalogue["fedora"] = 17; // ajoute la clé fedora asssocié à la valeur 17
"fedora" in catalogue; // retourne vrai (true)
catalogue["fedora"]; // retourne la valeur 17

Les tableaux de types différents

import std.stdio;
import std.variant;

void main(string[] args){
 Variant[] v = new Variant[](3);
 v[0] = 1;
 v[1] = 1.2;
 v[2] = "test";
 writeln(v);
}

$ ldc2 test_variant.d
$./test_variant
[1, 1.2, test]

Les tableaux de caractères

	le guillemet simple ' désigne un caractère char lettreA = 'a';

	le guillemet double " désigne une chaine de caractère string mot = "salut";

	le backticks (accent grave)` désigne une chaine de caractère gardant le formatage (wysiwyg)

string mots = `J'aime le D.

C'est super cool comme langage`.

Répéter le code : Les boucles

La boucle Pour chaque (foreach)

import std.stdio;

void main (){
 foreach(size_t count; 0 .. 3)
 write(count, " "); // écrit sur la même ligne
 writeln(); // saut de ligne

 size_t result = 0;
 foreach(size_t count; 0 .. 3){
 result += 2;
 write(result, " "); // écrit sur la même ligne
 }
 writeln(); // saut de ligne

 foreach(size_t count, string prénom; ["jean", "Marie", "Paul"])
 writef("%d ↪ %s | ", count, prénom); // écrit sur la même ligne
 writeln(); // saut de ligne

 string[string] personnes = ["jean": "Debian", "Marie": "CentOs", "Paul": "Fedora"]; // tableau associatif
 foreach(string prénom, string disribution; personnes)
 writefln("%s utilise GNU Linux %s", prénom, disribution);
 foreach(ref string distribution; personnes)
 distribution = "Fedora";
 writeln(personnes);
}

$ ldc2 test_foreach.d
$./test_foreach
0 1 2
2 4 6
0 ↪ jean | 1 ↪ Marie | 2 ↪ Paul |
jean utilise GNU Linux Debian
Paul utilise GNU Linux Fedora
Marie utilise GNU Linux CentOs
["jean":"Fedora", "Paul":"Fedora", "Marie":"Fedora"]

La boucle foreach s'utilise de façon intuitive et peut avoir au besoin un compteur comptant le nombre d'itération. Afin de modifier sur place le contenu du tableau il suffit de préciser que la valeur est une référence (ref) à l'élément du tableau.

Vous remarquerez qu'il est possible d'utiliser des caractères unicode pour le nom des variables. En effet, le D gère nativement l'unicode, par exemple les statisticiens peuvent utiliser les lettres lambda λ, mu μ, rho ρ et sigma σ.

La boucle Pour (for)

import std.stdio;

void main (){
 size_t result = 0;
 for(size_t count = 0 ; count <= 10; count++){
 result += 2;
 writeln(result);
 }
}

La boucle tant que (while)

bool isRunning = true;
size_t i = 0;
while(isRunning){
 if(i >= 10)
 isRunning = false;
 else
 i++;
}

Les structures de données

Il y a deux structures de données possibles : les structures et les classes. Les classes sont utilisées lorsque l'on a recourt à l'héritage ; dans tous les autres cas on utilise les structures.

Note :

	Surcharge :

	Les méthodes peuvent avoir le même nom mais prenant des paramètres différents

	Une méthode peut avoir le même nom et prenant les mêmes paramètres que ceux d'une classe parente. On parle de même signature : nom de la fonction + paramètres.

Les structures

Les structures en D ont eu quelques améliorations permettant une utilisation simple et efficace.

import std.string : format, toUpper; // import sélectif
import std.stdio;

struct Personne{
 private:
 string _nom;
 string _prénom;
 size_t _âge;

 public:
 this(string nom, string prénom, size_t âge = 18){ // constructeur
 _nom = nom;
 _prénom = prénom;
 _âge = âge;
 }

 string toString(){
 return "Je m'appelle %s %s et j'ai %d ans".format(_nom.toUpper(), _prénom, _âge);
 }

 @property
 string nom(){
 return _nom;
 }
 @property
 string prénom(){
 return _prénom;
 }
 @property
 size_t âge(){
 return _âge;
 }
}

void main(){
 Personne p1 = Personne("dupont", "paul", 34);
 Personne p2 = Personne("durant", "louis");
 writeln(p1);
 writeln(p2);
 if(p1.nom == "dupont") writeln("Bonjour dupont");
 else writefln("non!, Je m'appel %s", p1.nom);
}

$ ldc2 personne.d
$./personne.d
Je m'appelle DUPONT paul et j'ai 34 ans
Je m'appelle DURANT louis et j'ai 18 ans
Bonjour dupont

En bref :

	import sélectif

	les structures peuvent avoir un constructeur (pas obligatoire)

	les variables peuvent être publiques ou privées (protected, aucun intérêt en absence d'héritage)

	@property permet de ne pas utiliser () lors d'appel de méthode

	toString permet de représenter l'instance par une chaîne de caractère

Les classes

Les classes s'utilisent comme les structures et permettent l'implémentation de l'héritage d'une autre classe ou d'une interface. Le langage D ne supporte pas l'héritage multiple.

En reprennant l'example de la structure précédente :

import std.string : format, toUpper; // import sélectif
import std.stdio;

class Personne{
 protected:
 string _nom;
 string _prénom;
 size_t _âge;

 public:
 this(string nom, string prénom, size_t âge = 18){ // constructeur
 _nom = nom;
 _prénom = prénom;
 _âge = âge;
 }

 override string toString(){
 return "Je m'appelle %s %s et j'ai %d ans".format(_nom.toUpper(), _prénom, _âge);
 }

 @property
 string nom(){
 return _nom;
 }
 @property
 string prénom(){
 return _prénom;
 }
 @property
 size_t âge(){
 return _âge;
 }
}

class Mage : Personne{
 protected:
 size_t _level;
 size_t _mana;

 public:
 this(string nom, string prénom, size_t âge = 18, size_t level = 1){
 super(nom, prénom, âge);
 _level = level;
 _mana = _level * 10;
 }

 @property
 size_t bouleDeFeu(){ // puissance de la boule de feu
 size_t dégât = 0;
 if(_mana > 5){
 _mana -= 5;
 dégât = _level * 2;
 }
 return dégât;
 }

 @property
 size_t level(){
 return _level;
 }

 @property
 size_t mana(){
 return _mana;
 }

 override string toString(){
 return "Je suis %s %s le mage de feu".format(_nom.toUpper(), _prénom);
 }
}

void main(){
 Personne p1 = new Personne("dupont", "paul", 34);
 Mage m1 = new Mage("durant", "louis", 18, 15);
 writeln(p1);
 writeln(m1);
 if(cast(Mage) m1) writefln("Bonjour je suis un mage de niveau %d", m1.level);
}

$ ldc2 mage.d
$./mage
Je m'appelle DUPONT paul et j'ai 34 ans
Je suis DURANT louis le mage de feu
Bonjour je suis un mage de niveau 15

En bref :

	On utilise les classes si on utilise l'héritage

	Création d'une instance avec le mot clé new (ce n'est pas vrai pour les structures)

	Spécification de surcharge de méthode avec override

Pour aller plus loin

Un aperçu sur la parallèlisation

Un petit exemple d'itération parallèle, plus d'exemple sur le site officiel.

import std.stdio;
import std.parallelism;

void main(){
 TaskPool taskPool = new TaskPool(9);
 string[] prénoms = ["Paul", "Jean", "Pierre", "Julie", "Robert", "Jonathan", "Julien", "Sabrina", "Laetitia"];
 foreach(prénom; taskPool.parallel(prénoms))
 writeln(prénom);
 taskPool.finish();
}

$ ldc2 test_parallel.d
$./test_parallel
Paul
Jean
Pierre
Julie
Julien
Jonathan
Robert
Sabrina
Laetitia

Une delegate pour la route (closure)

À la mode fonctionnelle

import std.stdio;

void main(){
 immutable size_t n = 2;
 immutable size_t x = 1;
 pure size_t inc(size_t k){ return n + k; }
 pure size_t f(in size_t delegate(size_t) pure dg1, in size_t delegate(size_t) pure dg2) {
 return dg1(x) + dg2(x);
 }
 immutable size_t delegate(size_t k) pure dg = &inc;
 writeln(f(dg , dg));
}

$ ldc2 fonctionnelle.d
$./fonctionnelle
6

En bref :

	La fonction inc (pour incrémente)

	capture la variable n qui est dans le contexte local

	retourne la somme de n local + k passé en paramètre

	la fonction f

	prend en paramètre deux fonctions ayant la même signature que dg

	additionne le résultats des deux fonctions (2 + 1) + (2 + 1)

	retourne le résultat

	La fonction dg positionne la fonction inc comme delegate

	prenant en paramètre un entier positif

	retournant comme résultat un entier positif

De façon non-fonctionnelle

import std.stdio;

void main(){
 size_t n = 2;
 size_t x = 1;
 void f(size_t a){ writeln(a); }
 int inc(size_t k) { n = n + k; return n; } //incremente n d'un pas k
 f(inc(x) + inc(x)); // f(2+1 + 3+1) => 7
}

En bref :

	À la différence de la façon fonctionnelle

	n subit un changement d'état dans la fonction inc

	la fonction inc

	capture la première fois n valant 2

	capture la seconde fois n valant 3

	car n a subi un changement d'état au premier passage dans inc

Distributions linux conseillées pour le D

	Fedora fournit dans les dépôts officiels :

	ldc (compilateur libre basé sur LLVM)

	phobos 2.059 (bibliothèque standard)

	tango2

	gtkD (un wrapper pour gtk)

	derelict2 (pour les appli 3D avec des wrapper comme pour SDL…)

	dustmite (outil pour réduire un programme en un code minimal produisant le segfault)

	Debian via le dépôt non-officiel d-apt

	dmd (compilateur avec restriction de droit)

	gtkd

	tango

	plot2kill

	dcollections

	orange (serialisation)

	scid

	spiritd

	dstats

	msgpack

	derelict

	gl3n

	dsqlite

	vibe

	Archlinux fournit dans son dépôt officiel :

	ldc

	phobos

	et d'autres paquets (derelict, gtkd…) dans AUR, du côté des contributions utilisateurs.

Mythes et légendes

De nombreuses idées persistent, nous allons ici en répertorier quelques unes.

Dans la catégorie, le langage D est:

	Un langage propriétaire :
Faux : les compilateurs ldc et gdc fournissent une implémentation libre de ce langage

	Peu utilisé : Ceci est également de moins en moins vrai. Ce langage devient populaire outre-atlantique. La forge github répertorie le D en 25ème position en terme de quantité de projet utilisant ce langage au sein de leur infrastructure.

	En bêta : Non : le langage D est bel et bien stable et des améliorations périodiques sont mises à disposition.

	Possède deux bibliothèques standard : Non, depuis plusieurs années la bibliothèque standard est Phobos, le pendant de la STL + Boost en C++ .

Aller plus loin

	
Le langage D référence et API
(783 clics)

	
Environnement de programmation pour le D avec Fedora 17
(208 clics)

	
wikipedia Langage D
(1145 clics)

	
wikipedia Langage D (plus à jour que la version française)
(212 clics)

	
Grand tutorial sur le langage D
(401 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagesdlogo.png

EPUB/imagessections50.png

