

Le langage Go fête ses 4 ans

Posté par Rodger le 13 novembre 2013 à 16:44.
Édité par claudex, Florent Zara, Benoît Sibaud et Bruno Michel.
Modéré par patrick_g.
Licence CC By‑SA.

Étiquettes :

	golang

	programmation

	robert_griesemer

	rob_pike

	ken_thompson

	niklaus_wirth

[image: Golang]

Le langage Go, parfois nommé Golang et créé principalement par Robert Griesemer, Rob Pike et Ken Thompson (des grands noms, que dis-je, des légendes du monde UNIX), chez Google, vient de fêter ses 4 ans. Le langage semble commencer à trouver des applications dans des projets de grande envergure, au delà de projets internes à Google. Pour un langage relativement jeune, c'est encourageant.

[image: logo Go]

NdM : 2 composants de LinuxFr.org sont codés en Go, img et epub.

Sommaire

	
	Généralités

	Les goroutines

	La programmation orientée objet

	Le traitement des erreurs

	Conclusion personnelle

Généralités

Conçu pour la programmation système (au sens « applications sans interaction avec l'utilisateur humain », pas au sens « programmation kernel »), Go vise à pallier un certain nombre de défauts de C++ (notamment au regard de la lenteur de la compilation, de la complexité du langage et des défaillances au niveau de l'outillage). Ce qui se voulait être un successeur de C semble surtout rencontrer du succès auprès des aficionados des langages à typage dynamique, notamment Python et Ruby, à la grande surprise de ses concepteurs.

Le langage a subi de multiples influences. C, bien entendu, puisque le langage a été créé notamment par Ken Thompson, en partie à l'origine de C, mais on sent également l'influence des langages de Wirth, Oberon notamment, dont les objectifs de simplicité extrême et de compilation rapide ont été au cœur du design. Les langages à typage dynamique ont également eu une influence sensible sur le langage. Go ressemble, au niveau du ressenti du développeur, à un intermédiaire entre les langages à typage statique et les langages à typage dynamique. Pour la gestion de la concurrence et du parallélisme, Erlang semble également avoir eu une influence.

Typé statiquement, le langage propose les types de base classiques (entiers, réels flottants, complexes, booléens, mais aussi les chaînes de caractères que C n'a toujours pas), mais aussi pointeurs, tableaux fixes, tableaux dynamiques (appelés slices, ou tranches en français), tableaux associatifs (appelés maps), fonctions (closures), et canaux (channels) qui permettent la communication entre processus légers. Il est également possible de créer des structures de données, appelés struct comme en C.

Il propose un certain nombre d'outils standards, facilitant la compilation, la maintenance et le déploiement des applications, l'un des plus appréciés étant go fmt, qui reformate automatiquement le code source de tout le projet courant selon les règles de style officielles. Ainsi, tous les projets écrits en Go partagent le même style.

C'est un langage très pragmatique, conçu pour utiliser des techniques éprouvées et offrir des outils de qualité aux développeurs. Les concepteurs ont choisi de tourner le dos à de nombreux résultats de la recherche dans le domaine des langages de programmation, au nom de la simplicité. Ainsi, pas de pattern-matching, pas de pointeurs non-nuls, pas de typage paramétrique (même si c'est susceptible de changer à l'avenir), ce qui est souvent reproché aux concepteurs.

Les goroutines

Les processus légers de Go (appelés goroutines) sont un des atouts de ce langage ; on sent une légère influence d'Erlang, dont un des buts est d'inciter à la création de nombreux processus légers ne partageant pas la mémoire. Ceci permet de profiter au maximum des capacités des architectures multi-cœurs, tout en palliant les défauts des approches de bas-niveau basées sur des threads/sémaphores/mutex, encore utilisés dans la plupart des langages majeurs. La communication entre goroutines se fait à l'aide des channels, qui fonctionnent comme des pipes UNIX dédiés à cet usage.

La programmation orientée objet

Go propose aussi un système de programmation orienté objet, mais réduit à sa plus simple expression :

	un programme est découpé en paquetages (packages), et chaque paquetage indique ce qui est visible par les autres paquetages ou non (la distinction classique public/privé dans les autres langages),

	les champs d'un struct peuvent donc être tous visibles, tous cachés, ou toute combinaison intermédiaire,

	il est possible d'indiquer qu'une fonction donnée est une « méthode » s'appliquant à tel ou tel struct,

	enfin, un système d'interface permet de regrouper, exactement comme en java des types proposant tous un certain nombre de méthodes.

Et c'est tout ! Pas d'héritage, pas de traits, pas de mixins, pas de classe à proprement parler, mais on se rend compte qu'on a déjà l'essentiel sans ça. Notamment, le mécanisme d'interface, très léger, couplé au système minimaliste d'inférence de type, permet d'obtenir quelque chose de très proche du duck typing, ce qui rend le langage très attirant pour les utilisateurs de langages à typage dynamique.

Le traitement des erreurs

Le mécanisme de traitement des erreurs en Go fait partie des points noirs les plus souvent reprochés au langage. L'idée des concepteurs est de ne pas recourir, sauf cas extrêmes, aux mécanismes habituels d'exceptions, qui permettent de faire « remonter » les erreurs de plusieurs niveaux lorsqu'elles se produisent, mais au contraire d'obliger les développeurs à les traiter le plus tôt possible, dès qu'elles se produisent.

Le langage utilise donc, comme C, un système basé sur l'analyse des valeurs de retour des fonctions pour savoir si une erreur s'est produite. Le mécanisme est quand même un peu plus élaboré qu'en C où il est aisé d'ignorer involontairement une erreur et de laisser s'exécuter un programme dans un état instable (par exemple, ignorer que malloc a échoué et renvoyé NULL). Sans entrer dans les détails, Go oblige à traiter la présence ou non d'erreur, mais il est possible dans certains cas de contourner volontairement cette contrainte et de laisser le programme continuer de s'exécuter dans un état incohérent.

Conclusion personnelle

À mon avis loin d'être exempt de défauts, Go me semble néanmoins intéressant. C'est un langage très simple, un des plus simples que j'ai pu rencontrer, et on peut être productif en quelques heures. Le langage est très normé, grâce à sa simplicité et aux outils de formatage, et il est très facile de lire du code écrit par d'autres développeurs, ce qui est un atout indéniable dans le cadre de grosses applications. Niveau performances, c'est acceptable (on est entre C++ et python, un peu moins rapide que Java et ça devrait s'améliorer avec le temps) et niveau productivité, on est clairement dans le haut du panier.

Je pense que ça vaut le coup d'apprendre ce langage. Comme il innove très peu (voire pas du tout) au niveau théorique, il n'a rien de très sexy, mais du coup on arrive très vite à faire des choses intéressantes avec. Quant à l'utiliser en production, c'est faisable, mais le langage est encore jeune (notamment le nombre de bibliothèques disponibles est encore limité), donc à chacun de peser le pour et le contre.

Aller plus loin

	
La page officielle du langage Go
(716 clics)

	
Le post du blog officiel fêtant l'anniversaire du langage
(103 clics)

	
La visite de Go, tutoriel interactif
(268 clics)

	
Le groupe de discussion golang-nuts
(491 clics)

	
La page wikipédia du langage
(467 clics)

	
Faire ses premiers pas avec Go
(929 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/53f010aad489942090e2caa01835f3e5888fce212a70761493ae9132.png

EPUB/imagessections77.png

