

Les gouvernements devraient-ils s'abstenir d'externaliser les développements ?

Posté par Etienne Bagnoud (site web personnel) le 16 avril 2010 à 08:32.
Édité par Benoît Sibaud.
Modéré par patrick_g.

Étiquettes :

	bruce_schneier

[image: Sécurité]

Suite à une dépêche de pBpG sur la sécurité et le "Threat Modeling", j'ai eu une intéressante discussion avec ce dernier.

Je suis parti de l'idée que pour améliorer la sécurité, il fallait commencer par fournir des garanties aux utilisateurs de logiciel.

Aujourd'hui, je reçois Crypto-Gram, par Bruce Schneier. Le dernier article traite des assurances dans le domaine de la sécurité logiciel et émet l'avis qu'elles sont nécessaires pour faire réellement avancer la sécurité et que les nouvelles méthodes n'apporteront rien.

J'ai donc tenté l'exercice (fort difficile) de la traduction, Lord, have mercy...
De plus en plus, les technologies d'information sont partout, les mêmes technologies partout. Les mêmes systèmes d'exploitation sont utilisés dans les entreprises et les gouvernements. Les mêmes logiciels contrôlent les infrastructures sensibles et les achats à domicile. Les mêmes technologies réseau sont utilisées dans chaque pays. Les mêmes infrastructures soutiennent les grands comme les petits, l'important comme le futile, le local comme le global; les mêmes fournisseurs, les mêmes protocoles, les mêmes applications.

Avec toutes ces similitudes, vous pouvez penser que ces technologies sont conçues avec les standards de sécurité les plus élevés, et bien non. Elles sont conçues avec les niveaux plus bas ou, dans le meilleur des cas, un niveau plus ou moins médiocre. Elles sont conçues sans soins, comme un truc bricolé, avec juste l'efficacité en tête.

La sécurité est plus ou moins nécessaire, mais ce n'est pas une priorité. Nettement moins importante que les fonctionnalités et c'est ce qui est compromis quand les délais se resserrent.

Les gouvernement (le nôtre ou d'autres) devraient-ils arrêter d'externaliser le développement ? C'est la mauvaise question. Le code ne devient pas, par magie, plus sûr quand c'est une entreprise qui paie le développeur que quand il s'agit d'un gouvernement qui le paie.

Il ne devient pas moins sûr quand le développeur parle une langue étrangère, ou est payé à l'heure au lieu de mensuellement. Écrire l'intégralité du code en interne n'est plus une option viable; nous dépendons tous des logiciels écrit par Dieu-sait-qui, Dieu-sait-où. Et nous devons découvrir comment obtenir de la sécurité de cette situation.

La solution traditionnelle était la défense en profondeur: empiler une mesure de sécurité médiocre au-dessus d'une autre mesure médiocre.

Nous avons donc de la sécurité embarquée dans notre système d'exploitation et dans nos logiciels applicatifs, dans nos protocoles réseau et nos solutions de sécurité additionnelles comme les anti-virus et les pare-feux. Nous espérons que n'importe quelle faille de sécurité (soit découverte et exploitée, soit ajoutée délibérément) dans une couche soit contrecarrée par une autre couche de sécurité, et quand elle ne l'est pas, nous espérons pouvoir corriger nos systèmes suffisamment rapidement pour éviter des dommages à long-terme. C'est une solution lâche, quand on y pense, mais nous faisons avec.

Ramener tout le développement logiciel (et matériel, je suppose) en interne en raison de la fausse idée que la proximité équivaut la sécurité n'est pas une meilleure solution. Ce dont nous avons besoin c'est une amélioration des méthodes de développement logiciel, pour que nous ayons l'assurance que nos logiciels sont sûrs (indépendamment du programmeur, employé par n'importe quelle société, vivant dans n'importe quel pays, qui l'écrit). Le mot-clef ici est "assurance".

L'assurance, c'est utiliser les techniques de sécurité dont nous disposons avons plutôt que d'en développer des nouvelles. C'est tout ce qui est écrit dans les livres sur les pratiques de code sûr. C'est ce que Microsoft essaie de faire avec son "Security Development Lifecycle". C'est le programme "Build Security In" du "Department of Homeland Security". C'est ce que chaque constructeur d'avion doit respecter avant de mettre en production un élément d'avionique.

C'est ce que la NSA veut avoir avant d'acheter des composants d'équipement de sécurité. Comme industriel, nous savons comment fournir des assurances de sécurité dans les logiciels et les systèmes. Mais généralement, nous n'en avons rien à faire et les logiciels commerciaux, aussi peu sûrs qu'ils soient, sont suffisamment bon pour la majeure partie des besoins.

Une assurance est onéreuse, en terme d'argent et de temps, autant pour le processus que pour sa documentation. Mais la NSA en a besoin pour ses systèmes militaires sensibles et Boeing en a besoin pour son avionique. Et les gouvernements en ont de plus en plus besoin : pour les machines de vote, pour les bases de données où l'on confie nos informations personnelles, pour les passeports électroniques, pour les infrastructures de communication. La nécessité d'assurance devrait être plus commune dans les contrats gouvernementaux sur les technologies informatiques.

Les logiciels faisant tourner nos infrastructures sensibles (gouvernement, entreprise, tout) ne sont pas très sûrs, et il n'y a pas d'espoir de corriger ça de sitôt. Une assurance est notre seule option pour améliorer cette situation, bien que ce soit chère et que le marché ne s'en préoccupe pas. Les gouvernements doivent s'engager et y investir quand le besoin le demande, ensuite nous pourrons tous en bénéficier quand nous achèterons le même logiciel.

Autres lectures	Critical software
	Assurance

Cet essai est apparu dans "Information Security" comme deuxième partie d'un "argument/contre-argument" avec Marcus Ranum. Vous pouvez lire l'essai de Marcus.
Aller plus loin

	
Should the Government Stop Outsourcing Code Development?
(13 clics)

	
Threat Modeling sur DLFP
(11 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections46.png

