

L'évolution de Fastboot

Posté par fweisbec le 05 janvier 2009 à 11:54.

Modéré par patrick_g.

Étiquettes :

	développeur

[image: Noyau]

	L'idée d'Arjan Van de Ven, un développeur du noyau Linux, de tout faire pour réduire le temps de démarrage d'un système GNU/Linux à 5 secondes, a fait son petit bout de chemin depuis ces derniers mois.

Ayant réfléchi à tout ce qui pouvait être responsable de la lenteur de démarrage du noyau, Arjan en a déduit quelques observations, puis une solution. En juillet celui-ci a révélé un petit projet nommé Fastboot.

Pour expliquer ce qu'est fastboot : ce pourquoi il est né et ce qu'il propose, il faut d'abord faire un petit état des lieux de ce qui se déroule en interne au démarrage du noyau.
L'initialisation du noyau

Commençons par le commencement.

Le noyau Linux est compilé au format ELF, qui est un format standard d'exécutables largement utilisé dans le monde des Unix. Dans un exécutable ELF, le compilateur (GCC) ainsi que l'éditeur de liens (linker Ld) utilisent beaucoup les sections pour stocker des informations utiles, telles que les fonctions appelées dans les bibliothèques externes, les informations de débuggage, etc.

Un programme destiné à être compilé au format Elf peut même créer ses propres sections pour y stocker du code ou des données spécifiques et destinées à être regroupées. Par exemple, il est tout à fait possible de regrouper le code d'un ensemble de fonctions dans une section spécifique, puis d'extraire l'adresse de cette section pour parcourir toutes les fonctions qui y sont contenues.

Ce genre d'astuce est très utilisée dans le noyau Linux, et notamment pour résoudre un problème d'envergure : la plupart des composants du noyau ont besoin d'exécuter une fonction pour s'initialiser au démarrage. Par exemple les pilotes ont besoin de signaler au noyau qu'ils attachent telles fonctions à tel périphérique matériel, ils ont besoin de signaler qu'ils écoutent sur les fichiers de périphériques (répertoire /dev), ou même d'initialiser un périphérique, voire d'allouer de la mémoire pour la suite.

En bref, chaque composant du noyau, ou presque, a besoin d'exécuter une fonction d'initialisation au démarrage du système. S'il fallait regrouper un appel à toutes ces fonctions dans un fichier source et les appeler les unes après les autres, ce serait un enfer à maintenir et franchement peu élégant.

Ainsi le noyau Linux crée une section nommée .init.text pour ranger toutes les fonctions d'initialisation dedans. Lorsqu'un pilote décide de soumettre une fonction qui s'exécutera au démarrage, il a juste à faire précéder le nom de sa fonction par l'annotation __init, ce qui rangera le code de la fonction dans la section .init.text. Ensuite, il faudra que ce pilote appelle la macro device_initcall pour ranger l'adresse de sa fonction dans une autre section appelée .initcallxx.init

Cela ne sert pas à grand chose d'expliquer ce que signifie le xx ici, mais il est remplacé dynamiquement pour définir plusieurs niveaux d'initialisation, par exemple le cœur du noyau peut avoir besoin de s'initialiser avant le système de fichiers, etc.

Exemple :

int __init ma_fonction(void);

device_initcall(ma_fonction);

À la compilation, GCC va regrouper toutes ces fonctions dans la section .init.text et leurs adresses dans la section .initcallxx.init

Le noyau, quant à lui, aura pris soin de baliser la section .initcallxx.init avec deux pointeurs :

	__initcall_start, le début de la section .initcallxx.init ;

	__initcall_end, la fin de cette section.

Au démarrage, lorsque le noyau veut exécuter toutes ces fonctions, il procède en utilisant une boucle :

for (call = __initcall_start; call < __initcall_end; call++)

 call();

C'est un schéma grossier de ce qui se passe réellement, mais en réalité les choses ne sont pas beaucoup plus compliquées : tous les pointeurs de fonctions contenus dans la section .initcallxx.init vont s'exécuter.

À la fin de cette séquence, la mémoire utilisée pour stocker le code de ces fonctions sera libérée (la section .init.text).

Le problème qui se pose

Comme vous avez pu le voir, ces fonctions sont exécutées les unes après les autres. Ce sont les résultats de ces fonctions qui sont affichés sur votre écran au démarrage. Il peut y en avoir plusieurs centaines qui s'exécutent, certaines sont plus longues que d'autres.

Ce qui peut chagriner ici, c'est que les appels de ces fonctions sont sérialisés, ou encore synchrones. Si le mot peut faire peur, en réalité il traduit un concept simple : la prochaine fonction ne s'exécutera pas tant que la fonction en cours d'exécution n'est pas terminée.

Cela peut faire tiquer si l'on recense les ressources disponibles à ce stade du démarrage :

	Les machines récentes ont plusieurs processeurs, alors qu'ici, un seul processeur est utilisé à la fois puisque ces fonctions ne vont pas s'exécuter de manière simultanée. Et d'ailleurs les fonctionnalités SMP (multiprocesseur) sont activées à ce stade du démarrage. Mais il semble qu'on n'en profite pas vraiment ;

	Les fonctions d'initialisation risquent de faire des entrées-sorties, des allocations mémoires, en gros il y a des moments où ces fonctions vont "dormir", en attente de réponse de la part d'un périphérique, ou d'autres ressources du système. C'est dommage, on pourrait profiter de ce temps libre pour exécuter d'autres fonctions d'initialisation ;

	À ce stade du démarrage, l'ordonnanceur de tâches est déjà initialisé. On peut donc créer des threads et profiter du fait que nous avons plusieurs processeurs pour créer des tâches qui s'exécuteront tout à fait en parallèle. Et quand bien même nous n'avons qu'un seul processeur, on peut profiter de la préemption : lorsqu'une fonction d'initialisation bloque (dort) en attente de ressources, une autre peut profiter du processeur pendant ce temps là.

Juillet 2008, premier jet, premier Fastboot

En juillet dernier, Arjan Van de Ven a posté une première solution découpée en trois patchs :

	http://lkml.org/lkml/2008/7/18/488

	http://lkml.org/lkml/2008/7/18/489

	http://lkml.org/lkml/2008/7/18/490

	http://lkml.org/lkml/2008/7/18/491

Cette solution créait un nouveau niveau d'initialisation appelé asynchronous initcall, ce qui signifie fonction d'initialisation asynchrone. Il était donc possible, par le biais de ces patchs, de définir des fonctions d'initialisation qui pouvaient s'exécuter en parallèle à d'autres fonctions d'initialisation. Ou pour faire simple : plusieurs fonctions d'initialisation pouvaient maintenant s'exécuter en même temps, permettant ainsi de profiter des ressources rendues disponibles par la préemption et le multi-processeur.

Par défaut, les fonctions __init continuaient de s'exécuter de manière synchrone, les unes après les autres. Mais les développeurs aventureux et désireux d'optimiser le démarrage du noyau pouvaient tester leur fonction d'initialisation de manière asynchrone.

Ce travail était implémenté en utilisant le système des workqueues. C'est-à-dire un thread s'exécutant dans le noyau dans lequel réside une file d'attente de tâches à exécuter. Les workqueues sont une solution légère : elles ne nécessitent pas de création de multiples threads, on a juste un seul thread qui possède une liste de fonctions à exécuter.

Un nouveau thread de type workqueue était donc créé, et lorsqu'une fonction d'initialisation asynchrone était trouvée, elle était ajoutée en queue de liste du workqueue.

Ce qui implique une chose : ce workqueue n'exécutant qu'une seule tâche à la fois, seules deux fonctions d'initialisation pouvaient s'exécuter en parallèle: la partie synchrone, donc les fonctions __init habituelles, et une fonction exécutée par le workqueue.

Qu'est-il arrivé à cette solution? Il semble que Linus n'ait pas trop apprécié l'approche. L'idée de l'exécution asynchrone ne semblait pas mauvaise, mais il préférait quelque chose de plus granulé. Somme toute, ramener la partie asynchrone du démarrage à des choses plus fines plutôt que sur tout une fonction d'initialisation.

Arjan est donc revenu en ce 4 janvier 2009 avec une nouvelle approche.

Janvier 2009, un fastboot 2, plus granulé

Le 4 janvier 2009, Arjan revient avec une nouvelle approche. L'idée des initcalls complètement asynchrones a été abandonnée au profit d'une API permettant à quiconque de décider quelles parties de ses fonctions d'initialisation seront asynchrones.

	http://lkml.org/lkml/2009/1/4/159

	http://lkml.org/lkml/2009/1/4/155

	http://lkml.org/lkml/2009/1/4/156

	http://lkml.org/lkml/2009/1/4/157

	http://lkml.org/lkml/2009/1/4/158

Il ne s'agit plus maintenant de rendre toute une fonction d'initialisation asynchrone, mais de décider quelle(s) partie(s) d'une fonction d'initialisation devra s'exécuter de manière asynchrone.

Il suffit d'appeler la fonction

void async_schedule(async_func_ptr *ptr, void *data)

ptr étant la fonction à exécuter et data, les données à lui passer en paramètre.

C'est une idée beaucoup plus souple, laissant plus de contrôle au développeur et permettant ainsi d'éviter des conditions de concurrence, d'incohérences d'états au niveau du système. Exemple : que se passerait-il si le pilote de votre disque n'avait pas fini de s'initialiser pendant le montage de votre système de fichier ?

Pour éviter ce genre de situation, cette nouvelle API fournit de nouveaux outils de synchronisation. Lorsqu'une fonction asynchrone est créée, celle-ci reçoit un "cookie", permettant ainsi de l'identifier par rapport aux autres. Si cette fonction décide à un moment ou à un autre d'attendre que toutes les fonctions asynchrones qui ont été lancées avant elle se terminent, il lui suffit de lancer la fonction

void async_synchronize_cookie(async_cookie_t cookie) en passant son propre cookie. C'est donc un outil de synchronisation entre fonctions asynchrones.

Par exemple si A et B sont des fonctions asynchrones qui font l'état des lieux de certains périphériques. Et si C a été lancée après A et B, et qu'à un moment C a besoin de la liste de tous les périphériques recensés par A et B, alors il lui suffit d'appeler async_synchronize_cookie pour être sûre que A et B ont bien fini leur travail et ont tout trouvé.

Un autre outil de synchronisation a été prévu pour que les fonctions d'initialisation synchrones puissent attendre que toutes les fonctions asynchrones soient terminées.

Pour reprendre l'exemple de tout à l'heure, lorsque la fonction d'initialisation qui va monter la partition racine (/) va s'exécuter, elle voudra être sûre que l'initialisation des périphériques de stockage est terminée, sans quoi elle n'aurait pas de système de fichier à lire. Si ces périphériques sont encore en cours d'initialisation à cause de fonctions asynchrones, alors il suffira d'appeler void async_synchronize_full(void)pour attendre leur terminaison.

Si async_synchronize_cookie permet une synchronisation entre fonctions asynchrones, async_synchronize_full permet de synchroniser entre fonctions synchrones et asynchrones.

Voilà, mal de crâne mis à part, il semble que l'idée soit en bonne voie. Si des commentaires critiques sont évoqués dans la révision de ces patchs, pour l'instant ils semblent seulement concerner de petits détails et non pas l'idée principale, ce qui est plutôt bon signe et augure une bonne voie quant à l'inclusion de ces patchs dans la branche principale du noyau, avec beaucoup de chance pour la fenêtre d'inclusion (merge-window) en cours du 2.6.29, avec un peu moins de chance pour 2.6.30.

Dans tous les cas, il y a de fortes chances qu'on retrouve les évolutions du développement de fastboot dans la branche -tip maintenue par Ingo Molnar.

Voici de quoi dépend la rapidité de démarrage de vos futures distributions Linux.
Aller plus loin

	
Fastboot, première version
(47 clics)

	
Fastboot, seconde version
(105 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections26.png

