

Lidecli : Un outil en ligne de commande pour interagir avec les environnements de bureau

Posté par JulienPro le 13 juillet 2023 à 17:46.
Édité par Julien Jorge, Benoît Sibaud et Ysabeau 🧶.
Modéré par Ysabeau 🧶.
Licence CC By‑SA.

Étiquettes :

	ligne_de_commande

	x11

	wayland

[image: Ligne de commande]

Lidecli - abréviation de Linux Desktop CLI - est un wrapper libre (MIT) développé en Python permettant de scripter plus facilement le positionnement de vos fenêtres quel que soit votre environnement de bureau. Habituellement, scripter ou automatiser le positionnement des fenêtres nécessite :

	l’utilisation d’outils bien connus (wmctrl, xprop, qdbus, xrandr, etc.),

	ou, pour certains environnements - du code (LUA pour AwesomeWM par exemple).

En d’autres termes, il n’existe pas vraiment de moyens « simples » permettant de scripter à sa guise son environnement. Lidecli agit comme un wrapper qui simplifie grandement cette tache.

[image: Lidecli]

Lidecli par l’exemple

	Vous souhaitez donner le focus à votre terminal via un raccourci-clavier configuré au niveau de votre environnement ?

lidecli.py x-focus-name Terminal

	Vous voulez mettre votre navigateur web en plein écran ?

lidecli.py x-set-win-name-fullscreen Firefox

	Vous souhaitez déplacer votre navigateur web sur votre second moniteur ?

lidecli.py x-move-win-name-screen Firefox 2

	Vous souhaitez changer l’opacité de votre terminal à 80% ?

lidecli.py x-set-win-name-opacity Terminal 80

	Vous avez l’habitude d’ouvrir plusieurs VSCode et souhaitez pouvoir basculer de l’un à l’autre via des raccourcis-clavier ?

lidecli.py x-focus-name-nth "Visual Studio" 1

lidecli.py x-focus-name-nth "Visual Studio" 2

lidecli.py x-focus-name-nth "Visual Studio" 3

Il vous suffit d’associer - dans votre environnement de bureau - ces commandes à des raccourcis-clavier, et le tour est joué !

Plus de 160 commandes disponibles

L’outil est livré avec plus de 160 commandes qui peuvent être affichées en tapant :

lidecli.py -l

Chaque commande possède plusieurs tags (étiquettes), notamment pour mentionner quels outils sont nécessaires à son fonctionnement (wmctrl, xprop, etc.), les environnements de bureau compatibles le cas échéant, et si la commande est compatible X ou Wayland.

Il est possible de filtrer la liste des commandes en fonction des tags. Par exemple, lidecli.py -l -t x11 -n kde affichera la liste des commandes compatibles X mais qui ne sont pas spécifiques à KDE.

Un autre moyen de consulter les commandes disponibles est de consulter le site de l’outil : https://lidecli.com

Initialement, Lidecli a été développé pour KDE pour éviter les appels D-BUS, ce qui explique le nombre important de commandes dédiées à cet environnement de travail.

Mais Lidecli s’est ensuite étendu en utilisant les outils génériques de type wmctrl, et on peut donc l’utiliser quel que soit son environnement. À noter que le nombre de commandes pour Wayland semble pour le moment assez limité puisque le contrôle des fenêtres est dépendante du gestionnaire de fenêtres utilisé, contrairement à X ou l’architecture (et la sécurité) est différente.

Un wrapper, mais aussi un framework

Lidecli est un wrapper/une surcouche qui fait appel aux binaires usuels dédiés au scripting des fenêtres et écrans. Mais il s’agit également d’un framework, puisqu’il est relativement simple d’ajouter de nouvelles commandes. En effet, l’intégralité des commandes sont enregistrées dans un fichier unique - db.py - contenu dans le repository.

Chaque commande est simple à définir : nom, description, tags, les arguments, et les commandes shell à exécuter.

Exemple de définition d’une commande simple permettant de fermer une fenêtre :

 {
 "name": "x-kill-win-name",
 "description": "Kill a window specified by its name",
 "forwarded_arguments": [
 { "name": "WinName", "description": "The part of the window name to kill"}
],
 "command": "wmctrl -c #1#",
 "versions_working": [("x11", "all")],
 "versions_not_working": [],
 "tags": ["x11", "windows", "wmctrl"]
},

Il est également possible de faire appel à des callbacks (en Python) pour analyser le résultat de certaines commandes shell. De la même façon, une nouvelle commande peut faire appel à du code Python et non des commandes shell, pour des cas plus complexes.

Un outil pratique

L’idée de réaliser un outil unifié permettant de gérer ses fenêtres en ligne de commande semble intéressante. Même si des outils comme wmctrl accomplissent des merveilles, certaines tâches sont parfois plus complexes et nécessitent le développement d’un script. Ce manque est comblé par Lidecli.

À titre d’exemple, pour déplacer une fenêtre d’un moniteur à un autre sans changer sa géométrie ni son positionnement relatif, il est nécessaire d’avoir la configuration des écrans (avec xrandr par exemple), puis de faire des calculs d’offset pour repositionner la fenêtre à l’endroit souhaité.

De la même façon, pour donner le focus à la 3e fenêtre d’une application donnée (si vous avez 3 terminaux ouverts par exemple), il est possible de le faire avec wmctrl seulement mais ce n’est pas trivial :

wmctrl -lx |grep Terminal | cut -d ' ' -f1 | head -3 | tail -1 | xargs wmctrl -i -a

Lidecli semble donc combler un manque et offrir la possibilité à tous - sans connaissances particulières - de scripter leur environnement de travail relativement aisément.

Enfin, si une communauté se développe autour de l’outil (diffusé sous license MIT), cela pourrait ouvrir la voie à une véritable bibliothèque pour gérer aisément la disposition des fenêtres en ligne de commande quel que soit son environnement.

Aller plus loin

	
Lidecli sur Github
(315 clics)

	
Commandes supportées
(145 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/b3a5efbb05756a43024c3cf59a115c0803aba0b3c73b361eb3ac28c0.png
| Command | Description | Tags 1 oK 1 ko |

kde-list-shortcuts	Get all supported KWwin configurable shortcuts	x11, wayland, kde, windows, qdbus	kde 5.27.3	2
kde-monitors	Get the list of the monitors and their configuration	x11, wayland, kde, monitors, json	kde 5.27.3	2
kde-invoke-shortcuts	Invoke a Kiin conigurable shortcut	x11, wayland, kde, windows, qdbus	kde 5.27.3	2
sway-list-windows	Get windows 1ist with Sway on Wayland	wayland, sway, windows 12 121		
x-list-windows-wnctrl	Get windows list with wmctrl	x11, windows, wnctrl Ixi1all	7	
x-list-windows-xwininfo	Get windows list with xwininfo	x11, windows, xwininfo Ixi1all	7	
x-get-winid	From the class name of a window, output the Win ID	x11, windows, wnctrl Ixi1all	7	
x-is-win-maximized	Check if a window is maximized	x11, windows, xprop Ixi1all	7	
x-is-win-maximized-h	Check if a Window is maximized horizontally	x11, windows, xprop Ixi1all	7	
x-is-win-maximized-v	Check if a Window is maximized vertically	x11, windows, xprop Ixi1all	7	
x-is-win-minimized	Check if a window is minimized	x11, windows, xprop Ixi1all	7	
x-is-win-modal	Check if a window is modal	x11, windows, xprop Ixi1all	7	
x-is-win-sticky	Check if a Window is sticky	x11, windows, xprop Ixi1all	7	
x-is-win-shaded	Check if a window is shaded	x11, windows, xprop Ixi1all	7	
x-is-win-fullscreen	Check if a window is fullscreen	x11, windows, xprop Ixi1all	7	
x-is-win-above	Check if a window is above others	x11, windows, xprop Ixi1all	7	
x-is-win-below	Check if a window is below others	x11, windows, xprop Ixi1all	7	
x-focus-id	Give focus to a Window (by D)	x11, windows, wnctrl Ixi1all	7	
x-focus-name	Give focus to a Window (by name)	x11, windows, wnctrl Ixi1all	7	
x-current-focus-id	Get the WinID having the focus	x11, windows, xprop Ixi1all	7	

EPUB/imagessections72.png

