

LLVM 2.7 est sorti

Posté par zarikotaba le 27 avril 2010 à 16:45.

Modéré par patrick_g.

Étiquettes :

	développeur

	objective-c

	fortran

[image: Technologie]

Une nouvelle version de LLVM est sortie, elle est numérotée 2.7, elle suit la 2.6 qui est sortie 6 mois avant, le 23 octobre 2009.

Cette version, si elle reste dans la continuité de la 2.6, marque surtout une étape pour Clang et sa compatibilité avec le C++. Effectivement depuis début février, Clang est capable de compiler LLVM. LLVM 2.7 est la première version capable de se compiler toute seule sans aucune aide de gcc.

Plus de détails dans la suite de la dépêche…

NdM : Un très grand merci aussi à Rewind qui nous a également proposé une dépêche très complète sur le sujet. Le choix a été difficile et, après discussions, nous avons opté pour la fusion des news.

Cette dépêche est donc le résultat du travail de Zarikotaba ET de Rewind.
Cette version est sortie après 1 mois et 14 jours de maturation, le master bug (#6586) pour cette version a été posé le 11 mars 2010.

Cette période a permis à la communauté de corriger quelques bugs, mais il faut noter que les versions ne semblent pas spécialement déchaîner les passions puisque certains bugs sont restés orphelins pendant plusieurs semaines.

Quelques appels à contribution ont été lancés avant que les bugs ne soient pris en charge. Certains qui n'impactaient que des configurations vraiment particulières (du fortran sur darwin par exemple) ont même été descopés de cette version.

Autour de cette version, on peut trouver :

	 La bibliothèque LLVM : Low Level Virtual Machine. Elle permet de construire des applications qui peuvent générer du code, des compilateurs, des machines virtuelles, etc. ;

	 Un ensemble d'outils cohérents, notamment Clang, qui est un frontend C, Objective C et C++. (Son but est d'être un remplaçant de gcc) ;

	 Jusqu'à la version 2.6, LLVM proposait llvm-gcc, un front-end C basé sur GCC 4.2 pour pouvoir compiler du C avec LLVM. Cependant cette solution était très intrusive dans le code source de GCC ce qui empêchait de la maintenir proprement. Heureusement, GCC 4.5 a introduit des greffons permettant de modifier ses éléments internes et en particulier toute la partie optimisation et génération de code.

Le projet DragonEgg, qui sort pour la première fois avec cette version 2.7 de LLVM, est donc un greffon pour GCC 4.5 remplaçant l'optimisation et la génération de code de GCC par celle de LLVM. Le résultat est donc le même qu'avec l'ancienne version llvm-gcc mais elle est complètement externe à GCC. Il suffit alors d'ajouter "-fplugin=/path/to/dragonegg.so" sur la ligne de commande d'un GCC normal pour le transformer en llvm-gcc.

MC (Machine Code Framework)

Un nouveau sous-système sous lib/MC, dédié au traitement du code natif est apparu.

Les compilateurs classiques (gcc par exemple) passe par différentes étapes pour générer du code natif :

Source (C/C++...) -> [frontend] -> Représentation intermédiaire -> [Backend] -> fichier assembleur

Le fichier assembleur produit (extension en .s) est créé dans un répertoire temporaire. Le compilateur invoque alors un autre programme : un assembleur (GNU as par exemple), qui prend ce fichier texte en entrée et génère le code natif.

Le constat est simple : le compilateur passe du temps à formater un fichier .s qui sera immédiatement lu par l'assembleur pour générer du binaire. Par exemple, 20% du temps de compilation avec clang -O0 -g est passé dans la génération et le formatage de ce fichier.

On doit pouvoir écrire directement les binaires, sans passer par un programme assembleur externe.

Dans les précédentes versions des classes spécifiques étaient capables de générer des binaires Elf, Coff et MachO. Mais le code ne s'intégrait pas correctement avec le mécanisme de génération des fichiers textes en .s.

Les instructions et leur encodage sont contenues dans des fichiers *.td que les développeurs LLVM appellent des TableGen. Pour un backend particulier (un processeur ou une famille de processeurs supportés) un ensemble de fichiers en *.td définissent des informations qui servent à générer des parties du code spécifique à une target : affichage, encodage, décodage des instructions ou de l'assembleur. On trouve des fichiers *.td contenant les conventions d'appel de fonctions, des instructions, des sous-ensemble d'instructions (SIMD, NEON...), des informations de schedule...

L'idéal du projet MC est d'unifier toutes les informations qui sortent de ces fichiers *.td. Pour les cas simples, une modification dans un de ces fichiers devrait permettre de générer automatiquement un assembleur, un désassembleur et un backend LLVM.

Le projet MC a été intégré dans LLVM 2.7, mais c'est surtout dans les futures versions que l'on sentira les améliorations :	 Avec l'outil llvm-mc, on a déjà à notre disposition un assembleur et un désassembleur ;

	 Clang va traiter directement l'assembleur inline dans le code et remonter des erreurs plus claires ;

	 Une fois que le JIT aura été mis-à-jour, il supportera l'assembleur inline.

Pour plus d'informations, je vous encourage à lire le billet très complet de Chris Lattner sur le blog de LLVM.

Metadata extensible

Un des buts de LLVM est de permettre une séparation nette entre le frontend qui est responsable d'analyser le code source (C/C+++...) et le backend qui est capable de générer du code natif.

Le lien entre le frontend et le backend se fait grâce à une représentation intermédiaire ("IR") qui est une sorte d'assembleur haut-niveau spécifique à LLVM.

Pour que le frontend puisse passer un maximum d'informations au backend, un système de métadonnées flexible et extensible a été introduit dans LLVM.

Ce système permet d'attacher à une instruction des informations diverses et variées qui peuvent être récupérées par le backend. Des exemples d'utilisation :	 Les informations de debug qu'un ObjectWriter pourra écrire dans les sections dwarf d'un binaire ;

	 Des informations de type qui peuvent servir à affiner les analyses sur les dépendances mémoire ;

	 Un marqueur "non-temporal" qui permet de générer des accès mémoires qui ne reste pas dans le cache et donc qui ne le perturbe pas. (Pour des données rarement utilisées...).

Pour plus d'informations, un article a été publié sur le blog de LLVM concernant ces métadonnées.

Divers

Le JIT - Just In Time compiler - compilateur à la volée en français - permet de générer du code dans un tampon mémoire (sans passer par un fichier).

La version 2.7 permet maintenant d'instancier plusieurs JIT dans le même process pour préparer des tampons de code en parallèle.

VMKit a démarré comme un projet pour implémenter une Java Virtual Machine (JVM) et une CLI Virtual Machine (qui sert de base à Microsoft .Net) en utilisant LLVM et notamment ses capacités de compilation statique et just-in-time (JIT). Le projet est maintenant un framework complet pour écrire des machines virtuelles. Il offre notamment un garbage collector compatible avec le multi-threading à travers le sous-projet MMTk - Memory Management Toolkit.

Outre ce changement de philosophie et MMTk, la version 2.7 apporte une meilleure gestion des informations de début dans la JVM avec notamment le numéro des lignes, en utilisant les nouvelles métadonnées.

De nombreuses améliorations ont été apportées sur l'ensemble du code :	 Le support du processeur MicroBlaze a été initié ;

	 La passe GVN (Global Value Numbering) qui permet de supprimer des chargements redondants est plus agressive, notamment sur les chargements avec adresse complexes ;

	 La passe instCombine qui permet de recombiner les instructions et les opérations mathématiques pour faire apparaître les simplifications a été refactorée ;

	 La convention d'appel particulière à GHC (Glasgow_Haskell_Compiler) est supporté : GHC a gagné récemment un backend LLVM.

Dans les détails qu'il faut également noter :	 LLVM s'est doté d'un nouveau serveur, le dépôt SVN est bien plus rapide qu'avant !

	 LLVM s'est doté d'un logo. C'est un dragon, une vouivre (wyvern) pour être plus précis. La nouvelle mascotte n'a pas encore de nom officiel.

Outre les sous-projet LLVM déjà mentionnés, on peut aussi noter que LLVM est utilisé dans de nombreux projets externes. Parmi ceux-ci, on peut remarquer :

 	Unladen Swallow, une implémentation de Python par Google qui utilise un backend LLVM ;

	LLVM-LUA utilise LLVM pour ajouter la compilation statique et just-in-time à la machine virtuelle LUA ;

 	MacRuby est une implémentation de Ruby pour Mac basée sur LLVM ;

	Roadsend PHP est une implémentation de PHP basée sur LLVM.

	GHC (Glasgow Haskell Compiler) est un compilateur pour le langage fonctionnel Haskell.

Aller plus loin

	
Site de LLVM
(21 clics)

	
Notes de version
(19 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

