

LLVM 2.8, ça avance !

Posté par rewind (Mastodon) le 22 octobre 2010 à 13:06.

Modéré par patrick_g.

Étiquettes :

	développeur

	objective-c

	fortran

[image: Technologie]

Une nouvelle version de LLVM (Low-Level Virtual Machine) est sortie le 5 octobre 2010. Elle se nomme LLVM 2.8 et suit la version 2.7 sortie le 27 avril dernier. LLVM est une infrastructure de compilation sous licence BSD et est soutenue par Apple. Elle représente en fait une boîte à outils pour réaliser des compilateurs, des machines virtuelles et plein d'autres choses. Elle est fondée sur un langage assembleur typé qui sert de représentation intermédiaire pendant la compilation, mais également de bytecode sur le disque et de langage assembleur à part entière. Le projet LLVM développe également nombre de sous-projets, et non des moindres, comme Clang qui est un compilateur C/C++/Objective C/Objective C++.

Cette nouvelle version apporte plein d'améliorations, notamment au niveau des performances, et de nouveautés, que ce soit dans LLVM ou dans les projets annexes. Quelques-unes des principales avancées sont données dans la suite de la dépêche.
Clang

Clang a maintenant atteint une certaine maturité et est considéré comme utilisable en production pour tous les langages C, C++, Objective C, Objective C++. Cette version 2.8 apporte une compatibilité avec les standard C++ 1998 et 2003, ainsi qu'Objective C++, la gestion de certains #pragma de GCC (visibility et align), la gestion d'instructions étendues (SSE, AVX, ARM NEON, et AltiVec), la gestion des en-têtes C++ précompilés. Clang utilise maintenant l'architecture MC (Machine Code, voir après) pour générer du code binaire et analyser syntaxiquement l'assembleur inline.

Machine Code

Le sous-système MC est la partie chargée de gérer tous les problèmes au niveau assembleur et code objet. Il s'agit encore une fois d'une collection de petits modules qui ont un rôle particulier mais qui, une fois conjugués, permettent de fabriquer des assembleurs, des désassembleurs, et d'autres outils qui travaillent à ce niveau.

La version 2.8 permet enfin de générer du code objet pour l'architecture darwin/x86[-64] et est donc utilisée par llc (qui transforme le bytecode en code objet) et Clang (auparavant, Clang générait un fichier assembleur texte qui était compilé par un assembleur externe). Le développement est en bonne voie pour la prise en charge du jeu d'instructions ARM et pour les format objet ELF et COFF. Comme dit précédemment, MC est aussi utilisé pour compiler l'assembleur inline. Une des forces de l'intégration de MC et Clang au sein de LLVM est qu'il est possible de remonter les erreurs au niveau de l'assembleur inline directement dans CLang, chose impossible à faire avec GCC qui appellent un processus externe (as) et donc perd les informations sur le code source original en C.

libc++

libc++ est une implémentation de la bibliothèque standard C++ telle que définie dans le futur standard C++0x. Cette nouvelle implémentation a été décidée sur trois critères : créer une bibliothèque standard performante en utilisant toute l'expérience accumulée par les autres implémentations sans s'occuper de la compatibilité binaire avec l'existant, avoir une bibliothèque standard non-GPL, ne pas s'occuper de la compatibilité avec les anciens standard C++ mais directement viser C++0x.

Cette bibliothèque, bien que très jeune, est déjà quasiment complète. Il lui manque juste le compilateur qui va avec, donc la gestion du C++0x dans Clang.

LLDB, Low Level Debugger

LLDB est le dernier né des sous-projets de LLVM. C'est un nouveau débogueur qui en est encore à ses débuts mais qui est construit comme le reste des sous-projets de manière modulaire et qui réutilise des modules venant d'autres sous-projets, comme le désassembleur LLVM, ou l'analyseur syntaxique de Clang.

Les autres sous-projets

Le sous-projet compiler-rt permet à présent de disposer des morceaux de code bas-niveau nécessaires pour la compilation, comme certaines conversions de types de base, ou une implémentation d'une unité de calcul flottant logicielle pour les architectures qui ne disposent pas d'une unité matérielle.

DragonEgg, le greffon GCC qui permet de remplacer l'optimisation et la génération de code de GCC par celles de LLVM poursuit son chemin et est maintenant capable de compiler de l'Ada, du Fortran, du C et du C++. Entre autres améliorations, notons un temps de chargement plus court grâce à une réduction du nombre de symboles exportés.

Le sous-projet VMKit est un ensemble de modules pour fabriquer des machines virtuelles. À l'origine, le but était d'avoir une implémentation de la JVM et une implémentation de la machine virtuelle de .NET. Malheureusement, le développement de cette dernière a été abandonné.

Projets utilisant LLVM

La liste des projets utilisant LLVM s'allonge encore. On peut notamment citer plusieurs nouveaux langages de programmation :	Horizon est un langage de bytecode qui vise les systèmes d'exploitation à espace d'adressage unique ;

	Clay est un langage de programmation système utilisant la programmation générique ;

	Crack est un langage de script qui s'inspire de C, C++, Java et Python et dont le but est de s'exécuter aussi vite qu'un langage compilé. Il est réalisé par Google et les notes donnent une assez bonne idée de ce à quoi veut ressembler ce langage ;

	Kai (会) est un interpréteur expérimental utilisant des expressions symboliques imbriquées.

ClamAV, le célèbre antivirus libre, utilise également LLVM. Il a amélioré son interpréteur de bytecode interne en utilisant le compilateur JIT de LLVM, ce qui lui permet au passage d'écrire des tests de virus en C.
Aller plus loin

	
LLVM
(39 clics)

	
Les notes de version de LLVM 2.8
(13 clics)

	
Clang
(13 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

