

Mettre en place un serveur Jabber avec du TLS et du Forward Secrecy

Posté par skhaen (site web personnel) le 27 janvier 2015 à 10:19.
Édité par ZeroHeure, palm123, NeoX et Nÿco.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	jabber

	prosody

	ssl

	tls

	sécurité

	serveur_jabber_tls

	xmpp

[image: XMPP]

J'ai publié il y a quelques mois un tuto pour mettre en place "facilement" un serveur XMPP/Jabber avec Prosody et du SSL/TLS plutôt bien configuré sous Debian, j'ai eu pas mal de retours positifs depuis et je pense qu'il pourrait intéresser d'autres personnes.

Sommaire

	Installation

	
Configuration
	
La première brique
	Les logs

	Un minimum de sécurité

	prosodyctl

	Les modules

	
Chiffrons tout pour tout le monde
	
Création du certificat
	La méthode simple (et vraiment rapide)

	La méthode un peu moins simple mais qui est vachement mieux

	Création d'un certificat chaîné

	Génération du dhparam

	Configuration du SSL/TLS

	DNS

	Firewall

	Test

Installation

Pour installer Prosody sous Debian, il suffit de rajouter le dépôt dans son sources.list, on peut utiliser la ligne suivante pour le faire. Elle permet de simplifier énormement la manipulation (pour les détails, c'est ici) :

echo "deb http://packages.prosody.im/debian $(lsb_release -sc) main" | sudo tee -a /etc/apt/sources.list

Puis on ajoute la clé GPG du dépôt :

wget https://prosody.im/files/prosody-debian-packages.key -O- | sudo apt-key add -

On met à jour les dépôts, puis on installe Prosody :

aptitude update && aptitude install prosody

Le paquet lua-sec dans Debian est légèrement… ancien, si vous voulez les derniers algorithmes de chiffrement et que le Perfect Forward Secrecy soit pris en compte, il faut le mettre à jour.

Sur Debian Wheezy :

echo "deb http://ftp.debian.org/debian wheezy-backports main" >> /etc/apt/sources.list
aptitude update && aptitude -t wheezy-backports install lua-sec-prosody

Configuration

L'ensemble de la configuration se fait dans un seul fichier :

/etc/prosody/prosody.cfg.lua

La première partie est commune à l'ensemble des VirtualHosts que vous allez mettre en place. Ce qui sera écrit sous chaque VirtualHost "exemple.com" (en bas) sera propre à chaque VirtualHost.

Ce qui veut dire que si vous mettez votre configuration SSL dans la première partie, elle sera commune à tous les VirtualHosts. Faites attention aux répercussions que ça peut avoir ;-)

La première brique

Ouvrez le fichier avec votre éditeur préféré (pour moi ça sera vim)

vim /etc/prosody/prosody.cfg.lua

Il faut modifier/compléter les champs suivants (avec évidemment vos informations à la place de example.tld) :

Qui est administrateur du serveur (tout en haut du fichier) ?

admins = {"admin@exemple.tld"}

Voulez-vous autoriser les inscriptions sur votre serveur ? À moins de savoir ce que vous faites, je vous conseille grandement de le mettre sur false afin d'éviter de servir aux spammeurs et aux bots.

allow_registration = false;

Quel domaine voulez-vous utiliser (tout en bas du fichier) ? N'oubliez pas de changer example.tld pour votre domaine.

VirtualHost "example.tld"
enabled = true

Les logs

C'est très important (et déjà partiellement configuré). Ils permettent de trouver où est le problème quand ça ne marche pas (pour plus de détails sur la configuration : logging), la modification par rapport au fichier original consiste à mettre le prosody.log en warn et non plus en info et à faire la même manipulation pour le syslog :

log = {
 warn= "/var/log/prosody/prosody.log";
 error = "/var/log/prosody/prosody.err";
 { levels = { "error" }; to = "syslog"; };

Si vous avez un problème à régler, je vous conseille de rechanger le premier warn pour debug, puis de redémarrer prosody (via la commande prosodyctl restart), vous aurez alors toutes les informations qu'il vous faut dans /var/log/prosody/prosody.log et bien plus encore pour trouver d'où ça vient.

Un minimum de sécurité

De base, Prosody enregistre les mots de passe des comptes en clair sur le serveur, pour qu'ils soient hashés, il faut modifier la ligne authentication = "internal_plain" par la ligne suivante :

authentication = "internal_hashed"

prosodyctl

Prosody vient avec une commande qui aide à communiquer avec lui facilement : prosodyctl, et qui s'utilise sous la forme suivante :

prosodyctl COMMAND [OPTIONS]

Où COMMAND peut être :

	
adduser - exemple@exemple.tld - crée le compte utilisateur

	
passwd - exemple@exemple.tld - configure le password de l'utilisateur

	
deluser - exemple@exemple.tld - supprime l'utilisateur

	
start - démarre Prosody

	
stop - arrête Prosody

	
restart - redémarre Prosody

	
reload - recharge la configuration de Prosody

	
status - indique le status actuel de Prosody

Plutôt utile non ? :]

Nous allons ajouter un utilisateur (il vous demandera un mot de passe), puis nous rechargerons la configuration pour prendre en compte les changements (exemple.tld doit être le même que vous avez mis pour votre VirtualHost) :

prosodyctl adduser exemple@exemple.tld
 prosodyctl reload

Et là, c'est l'instant de plaisir, si vous essayez de vous connecter avec un client jabber (comme pidgin), ça devrait se connecter. Si ce n'est pas le cas (faire dans l'ordre) :

	voir les logs de prosody,

	voir les logs de votre client jabber,

	changer les logs de prosody de info à debug,

	boire un thé (ou une bière)

	vérifier votre firewall,

	rebrancher la box,

	reprendre un thé,

	changer de FAI.

Les modules

Comme vous pouvez le voir dans le fichier de configuration, il y a déjà un certain nombre de modules qui sont activés par défaut (roster, saslauth, tls, posix…). ils sont dans la partie modules_enabled = { }.

Si je vous parle de ça, vous vous doutez que ce n'est pas pour rien, il existe beaucoup de modules, dont un pour Tor :

	liste des modules : core modules,

	liste des modules tiers : prosody-modules,

	mod_onions : XMPP Federation Over Tor Hidden Services.

Chiffrons tout pour tout le monde

 Manifesto - *[A public statement about ubiquitous encryption on the XMPP network.](https://github.com/stpeter/manifesto)*

Si vous ne connaissez pas (ou mal) le SSL/TLS, je ne peux que vous conseiller d'attaquer le sujet par la conférence de Benjamin Sonntag dans le cadre du cycle de conférence « Il était une fois Internet ».

Création du certificat

 Si votre certificat n'est pas reconnu « valide » par votre client jabber, par exemple en cas de certificat auto-signé, il demandera autorisation pour l'utiliser.

La méthode simple (et vraiment rapide)

La méthode « simple » consiste à la création d'un certificat auto-signé avec l'aide de prosodyctl :

exemple.tld étant le domaine que vous avez mis dans prosody.cfg.lua
prosodyctl cert generate exemple.tld

	vérifier l'emplacement des certificats une fois qu'ils sont générés

	vous pouvez les bouger dans /etc/prosody/certs/ si vous avez envie (on part du principe que c'est le cas pour la suite)

	N'oubliez pas les deux lignes suivantes :

chmod 600 /etc/prosody/certs/exemple.tld.key
chown prosody:prosody /etc/prosody/certs/exemple.tld.key
chown prosody:prosody /etc/prosody/certs/exemple.tld.crt

Pour aller plus loin :

	Prosody - certificats,

	Prosody - configuration SSL avancé.

La méthode un peu moins simple mais qui est vachement mieux

Nous allons créer ce dont nous avons besoin en faisant une requête à startssl.com :

openssl req -sha256 -out /etc/prosody/certs/exemple.csr -new -newkey rsa:2048 -nodes -keyout /etc/prosody/certs/exemple.key

Cette commande génère (openssl req -out) une CSR (-new) ainsi qu'une nouvelle clé RSA de 2048 bits (-newkey rsa:2048) qui ne sera pas chiffrée (-nodes). Si vous voulez encore plus de détails, c'est sur openssl.org.

Je vous laisse sur startssl.com réaliser les différentes étapes pour s'inscrire (bonne chance !), il faut choisir la première formule (celle qui est gratuite). Après la création de votre compte, la validation de votre nom de domaine, etc. etc. nous pouvons passer à la suite.

	Après votre authentification sur le site, cherchez l'onglet « Certificates Wizard » qui se trouve normalement vers la gauche de votre écran,

	il vous demande alors pourquoi vous voulez un certificat ("Select Certificate Purpose"), vous choisissez donc XMPP (jabber) SSL/TLS certificate,

	le site vous demande de créer une clé privée ("Generate Private Key") : VOUS NE LE FAITES PAS !, vous appuyez au contraire sur skip (nous avons créé la clé privée quelques lignes au dessus),

	vous arrivez maintenant sur la page de demande de certificat ("Submit Certificate Request (CSR)"), toujours dans un terminal, vous devez taper la commande suivante :

cat /etc/prosody/certs/exemple.csr

Cette commande vous donnera un résultat qui devrait ressembler à

-----BEGIN CERTIFICATE REQUEST-----
MIIChjCCAW4CAQAwQTELMAkGA1UEBhMCRlIxCzAJBgNVBAgMAkZSMQswCQYDVQQH
DAJGUjELMAkGA1UECgwCRlIxCzAJBgNVBAsMAkZSMIIBIjANBgkqhkiG9w0BAQEF
AAOCAQ8AMIIBCgKCAQEAsoJcj6/bwl9naKG9C9seKt4HjBicV5o96zqoO0YxtJAe
X9k2t4KTp0CrzQ85c9DfggY8oAMq/DX/xRFL0cPxamxSwwW5ttVoBQ04wBWDhjEo
a2ixpe5UMmfakuY3Q56HsIbhh7Vo4RZS1OtPOv7E2J0CfDVUhrNCpDjZbtM8akTE
9P86BkXdroJgU8tfwONMFDBF2K8ElhN6mqftb89KGIUpgm1fcDq8woRpnFER7A3H
OwfCfnlkLrtMWVca1smEWnlutBKw6cgk6uSMK9V9/Y44wMKZHoOrOQE0R26+MGrA
MLhprqPaANIvhamq+tSsSASYZDeajDS3R1JWX188awIDAQABoAAwDQYJKoZIhvcN
AQEFBQADggEBAHYSpBxHhRP87qmWNqp9Sf8dYz3oQfJLA2cLpQV2MOIfFW0mmOyz
JG6TVISKVmiEHZtHqgW4TL3BSKBAWENBM8mjAjmxXCmy2MBSWBVhDVaGz4w+x3hO
UMtNMubYxkkc/xgX5vwbuReH6y1sbkMUQm1UETb6Fnmm8dyDzwPI0zV+NdzUqqhI
ARjMM2RrwPH7QZ2lSAOiB/X+fXKhwMSg0qUExYiln20JKBi6f58GdyOu6Hp/Fi+m
r8xnIcnZ2ZIIyjh4B2bfAfybTOWHHRtOaI9yH8pTP3HnKqgbtxZJYqioTAAAQxjQ
hFmXThFFrfhTDnqJ0Fc+bjcoiLoy46FtLz8=
-----END CERTIFICATE REQUEST-----

Copiez-le dans la fenêtre en bas (de -----BEGIN CERTIFICATE REQUEST----- à -----END CERTIFICATE REQUEST----- !).

Vous aurez alors votre certificat peu de temps après, transférez-le sur votre serveur, dans /etc/prosody/certs/ avec comme nom « exemple.tld.crt ».

Création d'un certificat chaîné

Pour créer un certificat chaîné, faites la manipulation suivante (startssl.com vous donne les liens vers ces deux certificats juste au dessus du bouton finish »» de la page Save Certificate) :

	télécharger le certificat intermédiaire de startssl :

wget https://www.startssl.com/certs/sub.class1.server.ca.pem

	puis le certificat root :

wget https://www.startssl.com/certs/ca.pem

	puis on forge le certificat chaîné (ne pas oublier les 2 >>) :

cat sub.class1.server.ca.pem >> /etc/prosody/certs/exemple.tld.crt
cat ca.pem >> /etc/prosody/certs/exemple.tld.crt

Génération du dhparam

Création du dhparam (prosody.im/dhparam) :

openssl dhparam -out /etc/prosody/certs/dh-2048.pem 2048

Java ne peut pas utiliser un dhparam supérieur à 1024 bits, ce qui empêche d'utiliser par exemple le logiciel Jitsi. Pour éviter cela (c'est tout de même un client grandement utilisé), on peut générer un dhparam de 1024 bits avec la commande suivante (ne pas oublier de modifier la configuration pour remplacer dh-2048.pem par dh-1024.pem) :

openssl dhparam -out /etc/prosody/certs/dh-1024.pem 1024

Configuration du SSL/TLS

On retourne dans /etc/prosody/prosody.cfg.lua :

 ssl = {
 key = "/var/lib/prosody/exemple.tld.key";
 certificate = "/var/lib/prosody/exemple.tld.cert";
 dhparam = "/etc/prosody/certs/dh-2048.pem";
 options = { "no_sslv2", "no_sslv3", "no_ticket", "no_compression",
 "cipher_server_preference", "single_dh_use",
 "single_ecdh_use" };
 ciphers = "EECDH+ECDSA+AESGCM EECDH+aRSA+AESGCM EECDH+ECDSA+SHA384 EECDH+ECDSA+SHA256 EECDH+aRSA+SHA384 EECDH+aRSA+SHA256 EECDH EDH+aRSA !RC4 !aNULL !eNULL !LOW !3DES !MD5 !EXP !PSK !SRP !DSS";
 }

	
c2s signifie « Client TO Server »,

	
s2s signifie « Server TO Server ».

c2s_ports = { 5222 }
s2s_ports = { 5269 }
c2s_require_encryption = true
s2s_require_encryption = true
s2s_secure_auth = false
allow_unencrypted_plain_auth = false;

s2s_secure_auth est sur false pour les raisons suivantes (TL;DR: possibilité de certificat auto-signé en face). Peut marcher avec s2s_auth_fingerprint mais c'est douloureux.

Les options s2s_secure_domains et s2s_insecure_domains peuvent aussi vous intéresser, surtout si vous voulez parler avec des personnes qui sont sur gmail (ce qui veut dire que ça ne sera pas chiffré).

Concernant la ciphersuite, le choix par défaut de Prosody est déjà pas mal :

ciphers = "HIGH+kEDH:HIGH+kEECDH:HIGH:!PSK:!SRP:!3DES:!aNULL";

Il faut tout de même enlever RC4 et eNULL, et tant qu'à faire, autant faire une liste de ciphers avec seulement du PFS (Perfect Forward Secrecy) (c'est à mettre dans le bloc ssl { }) :

ciphers = "EECDH+ECDSA+AESGCM EECDH+aRSA+AESGCM EECDH+ECDSA+SHA384 EECDH+ECDSA+SHA256 EECDH+aRSA+SHA384 EECDH+aRSA+SHA256 EECDH EDH+aRSA !RC4 !aNULL !eNULL !LOW !3DES !MD5 !EXP !PSK !SRP !DSS";

DNS

N'oubliez pas d'ajouter les enregistrements SRV dans vos DNS :

_xmpp-client._tcp.jabber IN SRV 0 5 5222 host.exemple.com.
_xmpp-server._tcp.jabber IN SRV 0 5 5269 host.exemple.com.

Firewall

En cas de firewall, il faut ouvrir les ports 5269 et 5222 (IN et OUT) en TCP. La configuration pour iptables donne ceci :

iptables -I INPUT -p tcp --dport 5269 -j ACCEPT
iptables -I OUTPUT -p tcp --sport 5269 -j ACCEPT
iptables -I INPUT -p tcp --dport 5222 -j ACCEPT
iptables -I OUTPUT -p tcp --sport 5222 -j ACCEPT

Test

Comme SSLLabs pour tester le SSL/TLS sur les serveurs webs, il existe xmpp.net pour les serveurs XMPP. Je vous conseille vivement de tester votre site !

Il faut toujours vérifier, même quand on pense pouvoir avoir confiance.

Si vous vous demandez comment améliorer votre note, c'est là : xmpp.net/about.

Aller plus loin

	
Article original
(704 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections66.png

