

MINIX 3 - Google Summer of Code

Posté par psychoslave__ (site web personnel) le 27 mars 2009 à 12:12.

Modéré par Mouns.

Étiquettes :

	développeur

	minix

	mplayer

[image: Noyau]

MINIX 3 est un très petit système modulaire multiserveur qui vise une grande fiabilité, une tolérance aux erreurs et l'auto-guérison. Le code qui tourne en mode noyau fait approximativement 5000 lignes de code seulement.

Le reste est exécuté en tant que processus utilisateurs, en majorité des processus pour chaque pilote de périphérique et serveur.

Si un pilote plante, il est automatiquement remplacé par une nouvelle copie, sans l'intervention de l'utilisateur (ni même qu'il le sache) et sans affecter les programmes actuellement exécutés.

Il y a peu d'autres systèmes qui peuvent résister à des erreurs fatales dans des composants de système critique de manière continue.

Le but des systèmes fiables sera achevé quand :

	aucun ordinateur n'aura de bouton RESET

et

	aucun utilisateur n'aura connu de plantage ni même ne connaîtra quelqu'un dans son entourage ayant expérimenté ce désagrément.

Pour la seconde année consécutive, le projet MINIX 3 est accepté au Google Summer of Code, permettant à des étudiants de travailler (travail rémunéré par Google) sur MINIX 3 durant l'été, avec certains de ses développeurs.

NdM : Cette dépêche est une traduction en français de la page MINIX sur le Google Summer of Code 2009.
MINIX 3 gère l'interface POSIX et environ 500 programmes UNIX standards y ont été portés, ce qui comprend X11, gcc, perl, python, ghostview, mplayer, la collection des outils GNU et bien plus encore. Il y a également un environnement graphique utilisateur basique (EDE). Néanmoins il reste beaucoup à faire.

Les développeurs souhaitent continuer le développement pour démontrer que bâtir un système à partir de petits composants interchangeables conduit à une conception extrêmement robuste qui est bien plus simple à comprendre et maintenir que des systèmes avec des millions de lignes de code noyau.

Si de bonnes performances sont importantes, ce n'est plus un critère aussi déterminant que par le passé.

Si la plupart des utilisateurs ordinaires se voyait offrir le choix entre le système le plus rapide possible et un autre 10 à 20% plus lent mais qui ne plante jamais, les développeurs de minix pensent qu'une large proportion d'utilisateur choisirait le second.

Pour de nombreuse entreprises (ex : banques, sites de commerce en ligne), avoir un système qui fonctionne 24h/24, 7j/7 sans la moindre erreur est la première des priorités.

Les systèmes embarqués sont un autre secteur où la grande fiabilité est importante. Les gens ne s'attendent pas à ce que leur télé et leur caméra numérique leur affiche un écran bleu, sauf pour afficher les images d'un beau ciel bleu.

En résumé, les développeurs de Minix 3 tentent de bâtir un système d'exploitation modulaire, fiable (et sécurisé) à partir de composants qui peuvent être remplacés à la volée et ils recherchent de l'aide dans cette optique.

Vous pouvez consulter le document qui présente MINIX 3 et son architecture plus en détail. Plus de détails sont également disponibles dans la page de documentation en ligne.

Au passage, signalons que MINIX 3 n'est pas la même chose que les précédents MINIX.

En effet, les versions antérieures étaient des projets à but pédagogique mais depuis cela a grandement évolué vers un système léger se concentrant sur la fiabilité (et la sécurité).

En tant que projet libre, il est plutôt populaire. Pas moins de 1,3 million de visiteurs ont consulté le nouveau site internet (mis en ligne il y a 3 ans). Actuellement 12 000 personnes téléchargent l'image CD-ROM chaque mois pour l'installer.

Résumé des projets de l'an dernier

De la participation au SoC de 2008 on peut mentionner le projet qui s'est le plus distingué, le projet sur le RAID logiciel.

Le but de ce projet était d'améliorer MINIX 3 avec le support pour les pilotes de filtres qui pourraient s'insérer de manière transparente entre le système de fichiers et le pilote de périphérique bloc.

En particulier, les développeurs de MINIX ont demandé à l'étudiant d'implémenter un processus serveur faisant des sommes de contrôle de toutes les données et pouvant faire le "mirroring" des données pour permettre les copies de sauvegarde de partitions.

De cette façon, il est devenu possible de détecter et restaurer les corruptions de données dues à des permutations de bits sur le disque ou d'un pilote bogué.

L'étudiant n'a pas seulement implémenté la fonctionnalité, mais a également mesuré les performances du framework résultant. Le projet a été un fort succès et a même conduit à une publication co-écrite par l'étudiant qui a récemment été présentée à une conférence internationale.

Profil recherché pour le SoC

Les idées du projet ci-dessous s'échelonnent du plus simple au plus difficile.

Toutes requièrent que vous soyez un(e) programmeur/programmeuse C expérimenté(e).

Pour certaines d'entre elles il serait utile que vous ayez déjà lu le livre MINIX, par exemple dans un cours que vous avez suivi à l'université.

Étant donné la difficulté de ces projets, les mentors attendent des personnes prêtes à travailler à plein temps tout l'été. Cela veut dire aucun travail à côté de cela et ne pas suivre de cours pendant ce temps.

Comme il s'agit d'un projet libre, de nombreuses personnes étudieront le code plus tard.

Pour cette raison il est essentiel que vous soyez quelqu'un qui est fier de son travail et qui veut produire du code :	propre,

	efficace,

	élégant

	et bien documenté

de manière à ce que les autres personnes s'émerveillent de sa beauté.

Faire simplement quelques hacks rapides pour que cela fonctionne la plupart du temps ne suffit pas.

Les gens doivent admirer votre code et même envier votre capacité à écrire un code si bon.

Si vous êtes un(e) programmeur(programmeuse) C expérimenté(e) qui s'y connait en système d'exploitation et capable d'écrire du code clair, bien documenté, jetez un œil aux idées ci-dessous et au formulaire d'inscription.

Liste des idées proposées

Les idées ci-dessous sont des suggestions, mais vous pouvez en proposer d'autres.

Pour vous lancer dans les projets liées au noyau vous devez avoir de l'expérience dans ce domaine.

Pour réaliser les pilotes, vous avez besoin d'une solide expérience en programmation et d'au moins un minimum de connaissances en développement noyau.

Le troisième groupe ne nécessite pas d'expérience en développement noyau.

MINIX 3 est diffusé sous licence BSD. En vous inscrivant, vous acceptez de diffuser votre code sous cette licence.

Projets noyau

	Utilisation de mémoire virtuelle.

 Une implémentation de mémoire virtuelle a récemment été faite, mais elle n'est pas beaucoup utilisée pour le moment. Dans le cadre de ce projet vous pourriez développer, par dessus cette implémentation, une mémoire partagée du modèle POSIX. Ce projet n'est pas pour les débutants.

	Gestion du calcul à virgule flottante matérielle.

 MINIX ne gère actuellement pas l'utilisation de cette extension matérielle. À la place une gestion logicielle est utilisée. Pour gérer le matériel, il est nécessaire de sauvegarder et restaurer les registres et un certains nombre d'autres choses. Ce projet nécessite une expérience avancée en développement noyau.

Projets de pilotes de périphérique

	Adaptateur NDIS.

Tous les systèmes d'exploitation libre ont des difficultés pour l'écriture de pilotes. Une approche possible serait d'utiliser les pilotes binaires conçus pour d'autres systèmes et de les adapter pour les rendre utilisables avec le système cible. Cela a été réalisé pour des pilotes de carte Wi-Fi pour Linux mais pas encore pour MINIX 3. Dans ce projet l'étudiant fera la même chose pour MINIX 3. Ce projet ne devrait être tenté que si vous possédez une grande expérience dans les pilotes Linux, BSD ou Windows.

	Implémenter les commandes AHCI.

MINIX 3 gère les disques IDE mais pas les disques AHCI. C'est la raison pour laquelle lorsque vous l'installez sur une nouvelle machine vous aurez souvent à paramétrer le BIOS pour utiliser l'émulation IDE au lieu de l'interface AHCI native. Une modification du pilote de disque pour utiliser les commandes AHCI de manière native serait donc intéressante. Une expérience avec les périphérique E/S et leurs pilotes est nécessaire pour ce projet.

	Porter ou écrire des pilotes de périphériques.

Tous les pilotes de périphérique sont les bienvenus. À peu prêt tout ce à quoi vous pouvez penser serait utile. Il devrait être possible de porter des pilotes d'autres systèmes, mais l'expérience montre qu'en pratique cela est extrêmement difficile car chacun des pilotes doit être lancé comme un processus utilisateur différent en dehors du noyau. Il est généralement mieux d'étudier un pilote existant pour voir comment cela fonctionne et d'en écrire ensuite un nouveau à partir de zéro. La plus haute priorité est mis sur les pilotes de carte gigabit Ethernet (par ex. Intel Pro/1000). Vous devriez avoir un minimum de compétences dans ce domaine pour vous présenter à ce projet.

	Gestion de débogueur distant.

MINIX 3 s'implante dans le monde de l'embarqué. Cela signifie qu'il devient nécessaire de pouvoir déboguer des machines sans périphérique d'affichage ni clavier. Il faut donc créer un petit module qui peut prendre les commandes à travers le port série depuis un débogueur distant, tel que gdb et de les exécuter.

Autres projets

Aucun des projets suivants ne nécessite d'expérience dans le développement noyau,

mais requiert tout de même de bonnes compétences en C.

	Écrire les systèmes de fichiers /proc et /dev.

Ce projet se divise en deux sous-projets très liés.

	Tout d'abord, MINIX 3 ne possède pas encore de système de fichier /proc qui fournit les informations sur les processus. Dans ce projet, vous devrez implémenter un nouveau serveur de système de fichiers qui peuple le répertoire /proc avec des informations par processus, permettant ainsi à 'ps' de les interroger. Une autre fonctionnalité pourrait être, par exemple, /proc/meminfo pour des statistiques sur l'utilisation mémoire et /proc/modules pour une liste des serveurs et des pilotes chargés.

	Deuxièmement, MINIX 3 alloue actuellement tous les nodes de périphérique de manière statique dans le périphérique racine (NdT : root). Une meilleure solution serait d'utiliser un système de fichiers /dev où les pilotes de périphérique peuvent enregistrer dynamiquement leurs périphériques. Une implémentation d'un nouveau serveur de système de fichiers /dev qui fournirait une interface pour les pilotes et modifierait le système pour l'utiliser serait donc à écrire.

	Amélioration des performances.

Aucun effort n'a été fait pour mesurer les performance du système et l'améliorer jusqu'à présent. Il y a cependant quelques outils disponibles et porter et utiliser les outils Pmc de BSD devrait être possible. Ce projet consiste à mesurer les performances, trouver les goulots d'étranglement, et si possible les faire disparaitre. Vous devriez commencer par trouver et porter les outils de mesure existants sur les autres systèmes et écrire des scripts pour les utiliser et collecter les résultats automatiquement.

	Porter les utilitaires BSD sur MINIX 3.

Des centaines de logiciels utilitaires ont été écrits spécifiquement par les contributeurs de MINIX. Les utilitaires GNU ont également été portés. Cependant, certaines personnes préfèrent les versions BSD de ces utilitaires, qui ne sont actuellement pas disponibles pour ce système. Le projet consiste simplement à réaliser ces ports.

	Test de stress de MINIX 3.

De nombreux tests de stress, qui poussent le système dans ses retranchements et tentent de le faire s'écrouler, ont été écrits pour d'autres systèmes . Le projet consiste ici à porter certains d'entre eux sous MINIX 3 et à écrire les scripts pour automatiser leur mise en œuvre. Si vous parvenez à faire planter MINIX 3, vous devrez également tenter de découvrir ce qui a produit le plantage.

	Porter des logiciels applicatifs vers MINIX 3.

Plus de 500 logiciels applicatifs ont déjà été portés, mais davantage encore seraient les bienvenus. Porter des logiciels Linux ou FreeBSD demande quelques efforts malgré la disponibilité de cc et gcc et de la conformité POSIX, les appels systèmes de Linux et FreeBSD ne sont pas gérés, et l'arborescence des fichiers d'en-tête est organisée différemment, etc. La seule chose à savoir est que les choses les plus simples ont déjà été faites. Les ports restant à faire sont plus gros et plus complexes.

Les programmes fonctionnels petits et rapides sont tout spécialement appréciés, en particulier pour les environnements (mobiles) aux ressources limitées, mais les bons logiciels de bureautiques, les frameworks et autres bibliothèques sont également utiles.

Quelques exemples : 	le navigateur web Dillo

	Le serveur web Lighttpd

	Le framework logiciel Qt

	les programmes réseau comme Tcpdump, Traceroute, Netcat, nslookup, etc.

L'équipe est ouverte à toutes les suggestions pour le port d'autres programmes. Dans certains cas, les ports peuvent être suffisamment simples pour que vous puissiez en proposer plusieurs.

	Améliorer la portabilité.

Tenter de faire tourner les commandes de MINIX 3 sous Linux ou FreeBSD (pour des motifs de comparaison) s'avère extrêmement difficile malgré leur écriture en C ANSI et la conformité POSIX. Les problèmes sont souvent liés à la structure et au contenu des fichiers d'en tête (par ex. ce qui est précisément défini dans types.h) et comment les Makefiles sont organisés. Ce projet consiste donc à travailler sur les fichiers d'en tête de MINIX 3 et les Makefiles des applications pour faciliter l'utilisation de gcc et pour facilement porter les programmes de MINIX 3 sous Linux et FreeBSD.

Vous pouvez aussi regarder la liste des requêtes sur le wiki de MINIX 3.

Les membres du projet sont ouverts aux suggestions de projets alternatifs.

Gardez en tête que la date limite pour postuler est le 3 avril.

Conclusion

Même si vous n'êtes pas intéressé par le SoC, essayez MINIX 3. Vous pourriez être surpris. Par exemple, il peut se compiler lui même, le noyau, tous les serveurs et les pilotes, etc. – 125 compilations – en seulement 6 secondes sur un PC moderne. Et si vous voulez aider le projet en dehors du SoC, vous êtes le(la) bienvenu(e).
Aller plus loin

	
La page à l'origine de cette dépêche
(14 clics)

	
Liste de diffusion du projet
(19 clics)

	
Wiki du projet
(29 clics)

	
Site du Summer of Code
(18 clics)

	
Formulaire d'inscription
(12 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections26.png

