

Modernisez votre code Java en un clic avec AutoRefactor v1.0.0 !

Posté par djano le 05 juin 2015 à 08:31.
Édité par palm123, BAud, Snark, Nÿco et Benoît Sibaud.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	java

	eclipse

	plugin

	refactoring

	bonnes_pratiques

[image: Java]

Le 22 mars 2015 est sortie la version 1.0.0 du projet AutoRefactor. Ce logiciel est publié sous Eclipse Public License v1.0 et GNU General Public License v3+.

AutoRefactor restructure automatiquement le code source d'un programme Java afin de :

	Faciliter la maintenance en améliorant la lisibilité

	exemple : lorsque toutes les branches d'un if ont les mêmes instructions à la fin des blocs, celles-ci sont déplacées après le if, …

	Moderniser le code

	exemple : passer des APIs de java.util.Vector vers celle de java.util.List, …

	Appliquer les bonnes pratiques

	exemple : utilisation d’accolades après un if, javadoc bien formés, bonne utilisation des APIs de BigDecimal, TestNG, …

	Réduire la taille du code

	exemple : un if imbriqué dans un autre if devient un if unique, suppression des variables locales déclarées juste avant un return, …

	Améliorer les performances

	exemple : utiliser Integer.valueOf(int) au lieu de new Integer(int), …

Sommaire

	Historique

	Utilisation

	
Principe de fonctionnement
	
Système de passes successives
	Attention ! Il faut toujours relire le code modifié automatiquement avant de committer les changements !

	De la difficulté d’écrire des outils automatiques dans un monde subjectif

	Futur

	Appel à contributions

Historique

J'ai commencé ce projet car j'en avais assez de faire les mêmes changements manuellement (ou semi-manuellement avec les refactorings proposés par Eclipse) dans tous les fichiers sur lesquels je travaille. J'ai commencé par utiliser des expressions rationnelles pour retravailler toute la base de code, mais les faux positifs étaient bien trop nombreux, et puisque les expressions rationnelles ne travaillent que sur du texte, toute analyse s'appuyant sur la sémantique du langage (types, variables, etc.) est impossible.

J'ai donc fait diverses expérimentations pour pouvoir faire des analyses « comprenant » le langage. Hélas toutes ces expérimentations ont raté.

Toutes, jusqu’à ce que je crée un greffon Eclipse s'appuyant sur l'API des Java Development Tools (Eclipse JDT). Cette dernière fournit un parser, mais surtout une API pour faire des refactorings. En fait, c'est l'API que l'IDE Eclipse utilise pour ses propres refactorings.

Utilisation

Depuis l'interface d'Eclipse, le développeur sélectionne les fichiers, packages ou projets Java à restructurer, et lance la réorganisation automatique du code. Pour cela, il choisit l’entrée AutoRefactor dans le menu contextuel accessible par un clic doit, ou bien il tape le raccourci clavier Alt+Shift+Y.

Le greffon AutoRefactor restructure alors le code en appliquant automatiquement les refactorings choisis par le développeur.

Principe de fonctionnement

Les restructurations de code sont implémentées par des refactorings successifs, c'est-à-dire des petits changements incrémentaux qui modifient le code sans changer son comportement à l'exécution. Ceci est vrai pour la plupart des refactorings, ceci dit, certains peuvent avoir des effets de bord (voir ci-après), mais un programme sensible à ces changements s'expose à des comportements indéfinis lors de l’exécution.

Système de passes successives

Le greffon travaille avec un système de passes successives. Lorsque le développeur a choisi les règles de refactoring à appliquer, le greffon prend la liste des refactorings et (algorithme simplifié) :

	le fichier Java à analyser est parsé et produit un arbre syntaxique abstrait (AST en anglais)

	pour chaque refactoring :

	cherche des opportunités de refactoring en visitant l'arbre syntaxique abstrait

	génère les réécritures de code lorsqu'une opportunité de refactoring a été identifiée

	lorsque tout l'arbre syntaxique abstrait a été visité, si des réécritures de code ont été générées :

	alors, toutes les réécritures de code générées sont appliquées sur le fichier

	le fichier est sauvegardé

	boucle vers 1.

	sinon, fin : il n'y a plus de refactorings possibles sur ce fichier Java

Actuellement, tous les refactorings implémentés font du filtrage par motif (pattern matching) et travaillent fichiers par fichiers.

Du coup, il est extrêmement facile de paralléliser le code : le greffon lance autant de fils d’exécution en arrière-plan qu'il y a de processeurs disponibles et utilise une simple liste de tâches pour leur fournir du travail. Chaque tâche consiste à analyser et restructurer un fichier Java.

Bien sûr, le greffon dispose d'une suite de tests composée de paires de fichiers exemples Java : un fichier avant restructuration, un autre fichier contenant le résultat que l'on souhaite obtenir après restructuration. La suite de tests unitaires exécute chaque règle de refactoring indépendamment sur sa paire de fichiers et compare la sortie attendue avec la sortie obtenue. Les deux doivent correspondre. La compilation et les tests unitaires sont exécutés sur un serveur d’intégration continue.

Je vous encourage très vivement à regarder les exemples tirés de la suite de tests.

Par ailleurs, je teste plus avant les refactorings sur la base de code mature d'OpenDJ. Cela me permet de trouver pas mal de bugs avant qu'ils n'atteignent une version stable et donc de rajouter des cas de tests. Le code mature est bien plus sournois que les cas de tests auxquels on peut penser ! :)

Attention ! Il faut toujours relire le code modifié automatiquement avant de committer les changements !

En effet, voici un exemple de code pour lequel les changements ont modifié le comportement :

Integer i1 = 0;
Integer i2 = new Integer(0);
if (i1 == i2) { // compare des références d'objets !
 System.out.println("OK");
}

Ici, "OK" n'est pas affiché sur le terminal car i1 et i2 sont deux objets différents en mémoire.

Maintenant si AutoRefactor modifie le code comme ceci :

Integer i1 = 0;
Integer i2 = Integer.valueOf(0);
if (i1 == i2) { // compare des références d'objets !
 System.out.println("OK");
}

"OK" sera affiché sur le terminal car i1 et i2 référencent le même objet en mémoire.

Comment est-ce possible ? Et bien la ligne Integer i1 = 0; est en fait générée comme ceci par le compilateur java : Integer i1 = Integer.valueOf(0);. De plus il existe un cache pour les objets Integer entre -128 et 127 (inclus), ce qui fait que i1 et i2 référencent le même objet en mémoire.

Ce code aurait probablement du être écrit comme ceci :

int i1 = 0;
int i2 = 0;
if (i1 == i2) { // compare la valeur des entiers !
 System.out.println("OK");
}

Et le code aurait correctement affiché "OK" sur le terminal.

AutoRefactor ne sait pas encore le faire, mais j’espère y arriver un jour.

Cet exemple démontre que certains refactorings ne préservent pas totalement le comportement lorsque le code s'appuie sur des comportements « limites » de Java.

Cependant il est possible que ce soit bien le comportement désiré par le programmeur.

C'est pourquoi il est recommandé de toujours relire les refactorings automatiques avant des les committer dans le gestionnaire de sources. Vous utilisez bien un gestionnaire de source, n'est-ce pas ?

De la difficulté d’écrire des outils automatiques dans un monde subjectif

Après avoir mis ce gros bémol, je tiens à signaler que j'essaie d’avoir un résultat final propre et logique. Je suis pragmatique : soit j'essaie absolument de préserver le comportement du programme, et dans ce cas, je ne fais presque rien ; soit je prends des risques « mesurés » en ignorant les cas « bêtes » comme celui-ci dessus, et alors j'autorise beaucoup plus de possibilités de refactorings.

C'est un équilibre dur à trouver dans certains cas tel qu'illustré par la méthode isHardToRead(). Bien sûr, c'est éminemment subjectif, mais puisque c'est moi qui code, j'impose mes idées. :) Plus sérieusement, si vous pensez que j'ai tort, je suis ouvert à discussion.

J'avais d'ailleurs pensé rajouter une préférence pour forcer à préserver le comportement, mais j'ai renoncé lorsque je me suis rendu compte du nombre de refactorings que cela interdirait. Par exemple, un code aussi simple que celui-ci :

System.out.println("this is " + obj.toString());

ne pourrait plus être réécrit comme ceci :

System.out.println("this is " + obj);

En effet, on perdrait la vérification sur référence nulle. Si obj est null, la première écriture lève une NullPointerException, alors que la deuxième écriture imprime "this is null". Bien sur, il serait peut-être possible de détecter qu'obj n'est pas null en faisant une analyse du flot de contrôle (j'ai bien dit peut-être), mais cela nécessite des outils dont je ne dispose pas encore. Par pragmatisme, j'ai simplement considéré que s’appuyer sur un appel à toString() pour détecter une référence nulle était une mauvaise pratique dans ce cas, et j'ai quand même écrit la règle qui fait cette réécriture :)

Futur

Même si tous les refactorings actuellement implémentés font du filtrage par motif, j’espère bien parvenir un jour à faire de l'analyse de flot de contrôle en construisant un graphe de flot de contrôle (CFG an anglais). Ceci permettrait d’écrire des refactorings comprenant les chemins d’exécution du code, comme le ferait un développeur qui lirait du code. En particulier, il deviendrait possible de réduire la portée des variables, comprendre quels chemins d’exécution du code sont morts (impossibles à atteindre)

J'aimerai aussi développer une autre fonctionnalité : l'extraction (semi-?)automatique de méthodes.

Voici un exemple de code que je vois trop souvent :

 // ... quelques dizaines / centaines de lignes de code
 boolean found = false;
 for (String s : strings) {
 if (toFind.equalsIgnoreCase(s2)) {
 found = true;
 break;
 }
 }
 if (found) {
 // faire quelque chose
 }
 // ... quelques dizaines / centaines de lignes de code

Comment simplifier cette longue méthode ?

En extrayant une nouvelle méthode, comme ceci :

 // ... quelques dizaines / centaines de lignes de code
 if (containsIgnoreCase(strings, toFind)) {
 // faire quelque chose
 }
 // ... quelques dizaines / centaines de lignes de code
}

private boolean containsIgnoreCase(Collection<String> strings, String toFind) {
 for (String s : strings) {
 if (toFind.equalsIgnoreCase(s2)) {
 return true;
 }
 }
 return false;
}

La plus grosse difficulté, c'est de savoir comment nommer la nouvelle méthode, et un humain doit intervenir, d’où le coté semi-automatique.

Le support de Java 7 arrive doucement avec le support de refactorings générant l'opérateur diamant '<>' (pas de besoin de répéter les types génériques), et le multi-catch (pas besoin de copier-coller le même bout de code dans deux blocs catch différents).

Par exemple, le code suivant :

List<String> strings = new ArrayList<String>();

try {
 // plus de code
} catch (IllegalArgumentException e) {
 e.printStackTrace();
} catch (NullPointerException e) {
 e.printStackTrace();
}

Peut être réécrit comme ceci en Java 7 :

List<String> strings = new ArrayList<>();

try {
 // plus de code
} catch (IllegalArgumentException | NullPointerException e) {
 e.printStackTrace();
}

La version 1.1.0 à venir a beaucoup de bonnes et nouvelles choses disponibles. Je vous conseille de l'installer depuis les nightlies.

Appel à contributions

J’espère que la présentation de ce greffon vous aura intéressé.

Si vous êtes un développeur Java, je vous encourage à l'installer :

	Depuis l'update site http://autorefactor.org/releases/

	Depuis l'Eclipse marketplace:

	
Pour les aventureux, installez une nightly depuis l'update site http://autorefactor.org/nightly/

Si vous êtes vraiment enthousiasmés et que vous voudriez l’améliorer ou l'adapter à vos besoins, n’hésitez surtout pas ! Envoyez des rapports de bugs, des pull-requests, interagissez sur gitter, etc.

Si vous voulez aider, mais que vous êtes à court d’idées, voici une petite liste :

	Testez le logiciels sur de grosses bases de code anciennes. C'est là où se cachent les surprises. :)

	Je suis aussi intéressé par des retours d’expériences, blog posts ou autres… Faites connaître ce greffon auprès de vos collègues !

	
J'ai plein d’idées dans le bug tracker, mais pas assez de temps pour les implémenter. Si jamais le cœur vous en dit…

	Le site web est moche, et a besoin d'amour

	
Le greffon n'a pas encore de logo malgré mes misérables tentatives.

Je m'amuse bien à réécrire le code automatiquement. Franchement, ce n'est pas trop difficile ou trop long d'ajouter de nouvelles règles, alors n’hésitez pas à vous lancer ! Je vous aiderai.

Aller plus loin

	
Site officiel
(622 clics)

	
AutoRefactor sur Github
(253 clics)

	
Soirée Autorefactor à l'AlpesJUG 24/02/2015 – Le support
(150 clics)

	
Exemples de restructuration de code effectuées par AutoRefactor (tirés de la suite de tests)
(251 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections23.png

