

MooseFS, système de fichier réparti à tolérance de panne

Posté par laurent wandrebeck (site web personnel) le 24 juin 2010 à 23:27.

Modéré par tuiu pol.

Étiquettes :
aucune

[image: Technologie]

MooseFS est un système de fichiers distribué méconnu regorgeant de qualités.

En vrac :	Le code est distribué sous GPLv3 ;

	Il utilise FUSE et fonctionne en espace utilisateur ;

	Il dispose d'une poubelle automatique à durée de rétention modifiable à souhait ;

	Il est très simple à déployer et administrer : comptez une heure, lecture de la documentation comprise pour avoir un serveur maître et quatre serveurs de données fonctionnels ;

	Compatible POSIX, il ne requiert aucune modification des programmes pour pouvoir y accéder ;

	L'ajout de machines pour agrandir l'espace disponible est d'une simplicité enfantine ;

	Vous choisissez le nombre de réplicas que vous désirez, par fichier ou par répertoire, pour la tolérance de panne, avec une seule commande, le tout à chaud…

Le développement de MooseFS a débuté en 2005, et il a été libéré le 30 mai 2008.
MooseFS est un système de fichiers méconnu regorgeant de qualités :

Un peu d'histoire. Une société polonaise a, pour ses besoins internes, développé (en C) un système de fichiers réparti et à tolérance de panne. Il a fini par être libéré (sous l'impulsion seule de la société semble-t-il), sous licence GPLv3, en décembre 2009.

Reposant sur l'utilisation de FUSE, le système de fichier est compatible POSIX et ne nécessite aucune adaptation des programmes pour pouvoir l'utiliser ! Il est donc fonctionnel sous tous les systèmes disposant de FUSE (GNU/Linux, *BSD…).

C'est stable ! Le plus gros déploiement connu monte à 1.5 Pio, ce qui n'est pas tout à fait négligeable. D'autres déploiements existent, et sont tous de l'ordre de la dizaine ou centaine de Tio.

Il est très simple d'assurer une réplication de vos données par une simple commande :

mfssetgoal GOAL fichier ou chemin

Un simple -r pour la récursivité vous permet d'appliquer cette valeur de manière… récursive, comme son nom l'indique. Le tout est géré de manière transparente, avec le système de fichier monté et en production. La hausse, mais aussi bien sûr la baisse du nombre de réplicas sont gérées.

Le système est réparti : les fichiers sont découpés en paquets de 64 Mio et distribués sur les machines dites « chunkserver », ou encore serveurs de données. Les fichiers inférieurs à cette taille ne sont, bien entendu, pas concernés par cette découpe.

MooseFS tolère les pannes : si, et seulement si (en toute logique), vous avez indiqué un « but » (voir réplication des données un peu plus haut) supérieur à 1 pour vos fichiers, la disparition d'un serveur de données ne gênera pas la disponibilité des données. Bien sûr, cela a un coût en matière de place, mais la disponibilité à un prix.

Il est aussi tout à fait possible d'agrandir le volume. Il suffit d'ajouter une ou des machines, de les configurer en tant que serveur de données (installation, dix secondes via apt-get ou yum, configuration, deux lignes à changer, trente secondes, lancement du service compris, vous en avez pour une minute !). Le serveur maître les détectera, et la répartition des données vers les nouveaux arrivés débutera sans que vous deviez intervenir !

Un système de poubelle à durée de rétention configurable est disponible par défaut. Tout fichier supprimé s'y retrouve tant que la durée de rétention n'est pas dépassée. Fini les rm malheureux sur des données non sauvegardées (ou dont la récupération est un calvaire).

Enfin, un serveur en Python permet de visualiser aisément et rapidement l'état du volume, la charge des serveurs, etc.

Bien sûr, tout n'est pas si parfait.

Il n'existe pas (encore) de procédure simple pour assurer la haute disponibilité du système de fichier. En effet, un serveur maître se doit d'être présent pour permettre les montages et l'accès aux données. Si le maître tombe, les fichiers ne sont plus accessibles.

Un serveur dit « metalogger » peut être mis en place. Il recueille tous les événements du système de fichier et peut permettre, si le maître est vraiment mal en point (perte de ses metadada, ou de son historique), de lui faire rejouer les logs pour que le volume reste cohérent.

La documentation est légère, tout comme les commentaires dans le code. À noter qu'il est prévu l'implémentation d'un algorithme permettant d'obtenir l'équivalent de quatre réplicas des données pour le coût physique de deux. Pour le moment, un fichier avec un « goal » de 3 prendra 3 fois sa taille d'origine (peu ou prou). Enfin, un canal IRC, #moosefs est ouvert depuis peu sur freenode, où vous êtes bien entendu les bienvenus.
Aller plus loin

	
Site officiel de MooseFS
(276 clics)

	
Liste de diffusion
(28 clics)

	
Dépôt CentOS
(41 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

