

Node.js passe en version 0.6.0 et arrive sous Windows

Posté par Bruno Michel (site web personnel) le 05 novembre 2011 à 23:54.

Modéré par Nÿco.
Licence CC By‑SA.

Étiquettes :

	nodejs

	javascript

[image: JavaScript]

Node.js est un environnement JavaScript côté serveur, sous licence MIT. Sa particularité est son approche asynchrone pour faciliter la montée en puissance dans des contextes avec beaucoup d’entrées‐sorties, notamment réseau. En pratique, il se compose :

	d’un interpréteur JavaScript, à savoir V8 ;

	de require(), un chargeur de modules compatible CommonJS ;

	d’une bibliothèque standard, volontairement restreinte (une sorte de libc JavaScript où tous les appels sont asynchrones) ;

	d’un ensemble de conventions : par exemple, les fonctions de retour indiquent toujours en premier paramètre si l’appel s’est bien passé, et dans le cas contraire, quelle a été l’erreur ;

	et d’un exécutable, « node », pour lancer tout ça.

La version 0.6.0 est sortie aujourd’hui et apporte quelques nouveautés de taille (plus de détails en seconde partie) :

	la prise en charge de Windows en utilisant les I/O Completion Ports (IOCP) ;

	un répartiteur de charge entre plusieurs processus Node.js intégré ;

	des moyens de communications entre des processus Node.js plus efficaces ;

	des améliorations du débogueur en ligne de commande ;

	des bindings pour la zlib ;

	la mise à jour de V8, passant de la version 3.1 à la 3.6.

La prise en charge de Windows, sans dégrader les performances pour les UNIX, a pris plus longtemps que prévu. Cela a fortement retardé la sortie de cette version, mais Ryan Dahl, son créateur, souhaite sortir la prochaine version stable de Node.js (la v0.8.0) pour janvier 2012.

Prise en charge de Windows

Node.js 0.4 pouvait déjà tourner sous Windows avec MinGW, mais les performances n’étaient pas là. En effet, Node.js utilise les bibliothèques libev et libeio, pour gérer sa boucle événementielle. Celle‐ci repose sur des mécanismes comme epoll ou kqueue sur les UNIX, qui restent efficaces même quand le nombre de descripteurs de fichiers est élevé (plusieurs milliers). En revanche, la version compilée pour Windows se retrouve à utiliser select, qui est lent dans ces conditions.

Windows possède lui aussi un système capable de tenir efficacement de fortes charges avec une latence faible : les I/O Completion Ports, mais ceux‐ci ne sont pas basés sur des descripteurs de fichiers. Ryan Dahl a donc décidé d’écrire une bibliothèque, la libuv, qui permet d’abstraire ces différences entre les différents systèmes d’exploitation.

Ainsi, le code de Node.js v0.6 est générique et toutes les différences de comportement entre Windows et les UNIX sont gérées au niveau de la libuv. Celle‐ci fait bien entendu appel aux bibliothèques libev et libeio sous UNIX, et aux I/O Completion Ports sous Windows, pour garantir les meilleures performances dans les deux mondes.

Répartition de charge entre plusieurs processus Node.js

Une instance de Node.js tourne dans un seul fil d’exécution (thread) d’un seul processus, et ne peut donc pas tirer pleinement profit de la puissance de calcul des ordinateurs actuels qui possèdent plusieurs processeurs et plusieurs cœurs par processeur. La solution consiste à lancer plusieurs instances de Node.js et, depuis la version 0.6, l’API cluster permet de faire cela simplement. Elle offre la possibilité de créer plusieurs instances esclaves à partir d’une instance maître, et de partager des ports TCP entre les instances esclaves. Cela peut, par exemple, servir à répartir des requêtes HTTP entre les instances esclaves.

Meilleure communication entre processus Node.js

« child_process.fork » lance un nouveau processus Node.js et ouvre un canal de communication entre le processus courant et le nouveau processus. Ces processus peuvent s’envoyer des messages avec send(), sous la forme d’un objet JavaScript, et les recevoir avec « on(message, callback) » :

var cp = require('child_process');
var n = cp.fork(__dirname + '/sub.js');

n.on('message', function(m) {
 console.log('PARENT got message:', m);
});

n.send({ hello: 'world' });

Et on pourrait avoir le code suivant dans « sub.js » (qui va être exécuté par le fils) :

process.on('message', function(m) {
 console.log('CHILD got message:', m);
});

process.send({ foo: 'bar' });

Débogueur en ligne de commande amélioré

Node.js propose un débogueur en ligne de commande qui s’appuie sur celui de V8. Il permet d’attacher des points d’arrêt, d’avancer en pas à pas, d’afficher la backtrace et le code en cours d’exécution, de montrer les valeurs des variables et d’exécuter du code JavaScript dans le contexte courant. La documentation donne la liste détaillée de toutes les commandes.

Bindings pour la zlib

Le nouveau module zlib prend en charge les algorithmes de compression gzip et deflate. Il fonctionne en utilisant les flux de Node.js.

Voici un exemple tiré de la documentation :

var gzip = zlib.createGzip();
var fs = require('fs');
var inp = fs.createReadStream('input.txt');
var out = fs.createWriteStream('input.txt.gz');

inp.pipe(gzip).pipe(out);

Mise à jour de V8

V8 est l’interpréteur JavaScript développé par Google pour Chrome et est au cœur de Node.js. La mise à jour de V8 apporte ainsi de meilleures performances (notamment au niveau du ramasse‐miettes — garbage collector —) et une stabilité accrue.

À ce sujet, Ryan Dahl envisage de synchroniser les sorties de Node.js sur celles de V8, toutes les 6 semaines.

Aller plus loin

	
Le site officiel de Node.js
(239 clics)

	
L’annonce de la sortie de la version 0.6.0
(40 clics)

	
Les changements d’API à connaître pour porter du code Node.js de la v0.4 à la v0.6
(51 clics)

	
DLFP : annonce de la sortie de la version 0.4.0
(30 clics)

	
DLFP : les contenus taggés « nodejs »
(47 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections80.png

