

Nouvelle version 2.6.27 du noyau Linux

Posté par patrick_g (site web personnel) le 10 octobre 2008 à 12:32.

Modéré par Nÿco.

Étiquettes :

	linux

	logiciel

	kernel

	noyau_linux

	coulisses

	linus_torvalds

	lwn

[image: Noyau]

Un peu plus de deux mois et demi après la version précédente Linus Torvalds a annoncé la sortie de la version 2.6.27 du noyau Linux.

Comme d'habitude le code source de ce nouveau Linux stable est téléchargeable sur les serveurs du site kernel.org.

Détails des évolutions, nouveautés et prévisions dans la suite...
La phase de test...

	La version candidate RC-1 a été annoncée le 28 juillet par Linus qui a souligné la taille impressionnante de cette version : "Cela fait deux semaines (et un jour) et la période des modifications est terminée. Je ne sais pas pourquoi mais j'ai l'impression que cette période aura été sacrément active. La taille du patch de la RC-1 soutient ce sentiment puisqu'avec 12 Mo il est environ 50% plus gros que le patch 2.6.26-RC-1.

Cette taille me rend un peu nerveux. C'est vrai cela signifie que nous sommes vraiment bons pour inclure toutes les nouveautés mais je dois dire que je me demande parfois si nous n'incluons pas trop de choses à la fois et si notre cycle de sortie (déjà court) n'est pas en fait trop gros. Mais bon cette discussion est pour une autre fois.

Il y a une tonne de nouveaux trucs là-dedans mais pour moi les choses les plus intéressantes sont la traque du verrou global et peut-être l'introduction de la fonction get_user_pages_fast() sans verrou.

D'autres trucs ? Le chargement des firmwares, le travail de fusion des branches x86 qui continue. De plus en plus de code qui devient générique. Le support des machines de 4096 processeurs, etc.

Allez sur kernelnewbies ou sur Linux Weekly News pour plus de détails. Moi je vais dormir pendant 24 heures ;)"

	Une semaine après cette première version candidate Linus a annoncé la version RC-2 :"Il y a plein de changements divers là-dedans et j'espère que nous allons commencer à ralentir un peu les choses. Il y a quand même un truc particulier qu'il est peut-être bon de souligner du fait des conséquences éventuelles : un certain nombre d'architectures ont utilisé "l'accalmie" après la RC-1 (Hah!) pour effectuer le renommage include/asm-nom-de-l'architecture => 'arch/nom-de-l'architecture/include/asm. (...) Sinon il y plein d'autres petits changements mais rien qui ne puisse provoquer un « Wow! ». Notez qu'à l'étape RC-2 il ne devrait de toute façon pas y avoir ce genre de truc donc je ne me plains pas."

	Les versions candidates RC-3 et RC-4 ont vu l'inclusion du pilote ath9k pour les cartes wifi basées sur des puces Atheros, le support du trackpad des nouveaux portables Apple ainsi que des corrections sur les systèmes de fichiers XFS et UBIFS.

	Le 28 août c'est la version RC-5 qui a été annoncée : ­­« Nouvelle semaine (mes semaines semblent avoir 8 jours, c'est très bizarre) et nouvelle version candidate. Cette RC-5 comporte (...) un grand nombre de petits changements qui, je l'espère, corrigent pas mal de régressions. Le plus excitant (du moins pour moi — apparemment ma vie est ennuyeuse au-delà du concevable) est que nous avons eu des débordements de la pile (stack overflow) qui ont totalement corrompu les structure de données des threads. C'est excitant parce que nous n'avions pas eu cela depuis pas mal de temps. Bien sûr ce bug aurait impacté uniquement les gens un peu trop aventureux et ayant sélectionné l'option de configuration 4096 processeurs ! ».

	Les versions candidates RC-6 et RC-7 sont apparues respectivement le 9 et le 21 septembre, avec le Kernel Summit et la Linux Plumber Conference dans l'intervalle ce qui a un peu ralenti le rythme.

	La version RC-8 a été annoncée par Linus le 29 septembre : « Celle-ci devrait être la dernière. Nous ne sommes pas à court de régressions mais, en même temps, je dois faire un choix à un certain moment et dans l'ensemble les régressions ne semblent pas _trop_ effrayantes. Et évidemment la RC-8 en corrige la plupart. ».

Il est à noter que le bug vicieux qui affectait le pilote e1000e des cartes réseau Intel n'est plus dangereux mais que Linus n'en pense pas moins : ­­­« Le _vrai_bug est dans la conception du matériel qui permet de foutre en l'air ces cartes sans même avoir un bit de sécurité. J'espère qu'Intel ne va pas traiter ça comme étant juste un bug logiciel. Certains concepteurs de matériel devraient vraiment réfléchir à propos du genre d'orifice dans lequel ils ont mis leur tête ».

	Linus a finalement décidé de sortir une version RC-9 afin de bénéficier d'une petite période de test supplémentaire : « Je sais, je sais, j'avais dit que la RC-8 serait la dernière et que le noyau serait disponible ce weekend. J'ai menti. Faites-moi un procès. J'ai inclus deux corrections pour des bugs subtils aujourd'hui et, bien qu'ils semblent parfaitement corrects et aient été testés par les gens en charge des régressions, je n'ai pas pu me décider à leur coller le label "v2.6.27" sans faire un peu plus de tests. J'ai aussi pensé que c'était une bonne idée d'avoir une version candidate contenant les patchs qui devraient corriger la corruption du pilote e1000e ».

Les nouveautés...

	Le contrôle d'intégrité des périphériques en mode bloc fait son apparition dans ce noyau. Certains systèmes de fichiers possèdent des fonctions de corrections d'erreurs basées sur le calcul de sommes de contrôle (checksums) mais, bien souvent, l'alerte de ces systèmes de fichiers est trop tardive pour être vraiment utile. La corruption n'est détectée que lors de la lecture et donc le problème peut n'être signalé que des mois après la disparition des données initiales. Ce qu'il faudrait c'est que les erreurs de transmission de données soient détectées le plus tôt possible, dès que la corruption se produit. C'est pour cela que de nombreux disques durs modernes sont maintenant équipés d'une surveillance matérielle de l'intégrité des données. Bien entendu ce contrôleur exige une coopération de la part du système d'exploitation et c'est ce support qui entre dans le noyau 2.6.27 pour les disques SATA et SCSI.

Concrètement une somme de contrôle de 8 octets est calculée pour chaque bloc de 512 octets. Le résultat (les données plus les méta-données d'intégrité) est donc stocké dans des secteurs de 520 octets sur le disque et une vérification est effectuée lors de chaque passage des données dans un périphérique (Host contrôleur, contrôleur RAID matériel, contrôleur réseau, etc). De même, quand les données sont lues par la suite, il y a également une vérification à chaque étape dans l'autre sens. On voit donc qu'avec cette méthode une corruption est détectée immédiatement et qu'il devient très facile d'identifier le composant fautif. La documentation explique très clairement la motivation de cette infrastructure de contrôle d'intégrité ainsi que les détails techniques associés. Une présentation de cette nouvelle fonction s'est déroulée lors du symposium Linux d'Ottawa et un fichier PDF intitulé "Linux Data Integrity Extensions" est disponible.

	Le système de fichiers UBIFS a été ajouté au noyau 2.6.27.

Conçu spécialement pour fonctionner avec les périphériques flash de type MTD ce système de fichiers abandonne tous les présupposés des systèmes dédiés aux disques durs (qui eux sont basés sur des secteurs). UBIFS (UBI File System) s'appuie comme son nom l'indique sur la couche UBI (Unsorted Block Images). Il s'agit d'une couche spécifique se trouvant dans drivers/mtd/ubi et qui joue le rôle de gestionnaire de volume (volume manager) et de répartiteur des écritures (wear-leveling) par dessus la mémoire flash.

La documentation explique clairement les avantages d'UBIFS (notamment l'emploi de la technologie de write back qui met en cache les données au moment de l'écriture afin d'augmenter les performances) et souligne qu'il est éventuellement prévu de développer une couche UBI2 (API compatible pour éviter de devoir toucher à UBIFS) afin de pouvoir avoir un temps de boot qui n'augmente pas linéairement avec la taille de la mémoire flash. Il est à noter que ce nouveau système de fichiers spécialisé UBIFS ne pourra vraiment montrer son potentiel que si les fabricants de périphériques Flash acceptent la possibilité de passer outre la FTL (Flash Translation Layer). Cette couche d'émulation de disque dur ne sert plus à rien dans le cas d'UBIFS mais il y a fort à parier que certains fabricants vont traîner des pieds avant de fournir les spécifications de leurs périphériques et de permettre la désactivation de la FTL.

En définitive UBIFS est donc le premier système de fichiers de nouvelle génération pour mémoire flash à faire son entrée dans le noyau et il le doit certainement au poids de la société Nokia qui finance son développement. Le concurrent LogFS n'a pas pu pour l'instant franchir ce pallier car il n'est quasiment écrit que par une seule personne (Jörn Engel). Même si rien n'est perdu pour LogFS cette situation est symptomatique du mode de développement actuel du noyau par des équipes dédiées et payées par les grandes entreprises.

	L'infrastructure ftrace (function tracer) permettant de suivre les appels système d'une commande donnée en paramètre est entrée dans le noyau 2.6.27. C'est un outil puissant d'analyse du comportement de Linux qui est ainsi mis à la disposition des programmeurs qui veulent comprendre les moindres détails du fonctionnement de leur code.

L'infrastructure ftrace utilise les marqueurs statiques présents dans le noyau par l'intermédiaire de fichiers virtuels se trouvant dans le répertoire /debugfs/tracing et produit ainsi le résultat de chaque fonction appelée dans le noyau. On peut également visualiser les temps de latences (avec le tracer wakeup), les interruptions (avec le tracer irqsoff), les préemptions (avec le tracer preemptoff), les changements de contexte (avec le tracer sched_switch), etc. Une documentation très détaillée est disponible et permet de se lancer dans le tracing de son noyau.

Aux cotés de ftrace on peut également noter l'inclusion du patch tracehook qui permet de gérer de façon unifiée le tracing dans le noyau. Le patch est apparu tardivement (sans passer par l'étape linux-next) mais les développeurs ont jugé que l'impact sur le code existant était minimal et que l'entrée dans le noyau 2.6.27 était possible. Avec tracehook, Roland McGrath a retravaillé l'appel système ptrace() afin de simplifier l'infrastructure future utrace. Une fois que utrace sera au point les développeurs pourront importer les patchs du projet SystemTap afin de parachever le travail.

Alors que, depuis des mois, certains s'inquiétaient du retard pris par rapport à l'outil de Sun,Dtrace, l'intégration de ftrace et tracehook est donc une indéniable avancée de Linux dans un domaine difficile. le noyau 2.6.27 démontre ainsi que les développeurs sont au travail (cet article du site LWN fait le point sur tous les projets de tracing) et que le retard sur Dtrace est peut-être sur le point d'être rattrapé.

	Une implémentation libre du système de fichiers OMFS a été accepté dans le noyau 2.6.27 en dépit d'une controverse ayant eu lieu sur la LKML. Le système OMFS (Optimized MPEG Filesystem) est un système de fichiers propriétaire ayant été utilisé sur des périphériques de type Rio Karma ou ReplayTV. Le développeur Bob Copeland a écrit une version libre d'OMFS en faisant de l'ingéniérie inverse et il a proposé l'inclusion d'OMFS dans la branche principale du noyau. La revue de code ayant été positive, tout semblait se dérouler sans accrocs quand Andrew Morton a soulevé la question du nombre d'utilisateurs d'OMFS. Comme ce système de fichiers n'a été utilisé que sur des périphériques qui ne sont plus en vente et comme les utilisateurs des patchs externes OMFS de Bob Copeland n'a jamais dépassé le nombre de 20, était-il raisonnable d'inclure ce système qui allait nécessiter une certaine maintenance au fil du temps ? La controverse est restée fort courtoise et les arguments ont été examinés les uns après les autres. Finalement, comme il semblait peu efficace de pousser OMFS en espace utilisateur et passant par FUSE et comme le code était simple et bien écrit, il a été décidé d'inclure OMFS dans la branche principale du noyau. Cet exemple est vraiment symptomatique du mode de développement de Linux qui privilégie les arguments techniques pour faire des choix en ayant toujours le service des utilisateurs comme but ultime.

	La technologie de cache de page sans verrou fait son apparition dans le nouveau noyau et permet d'augmenter significativement les performances et la montée en charge. Le cache de page est conçu pour garder dans la mémoire vive de la machine (RAM) des copies de fichiers présents sur le disque dur afin de permettre des accès rapides sans avoir à passer par le goulet d'étranglement des entrées/sorties d'un périphérique lent comme le disque dur.

Chacune de ces pages en cache possède son propre verrou d'accès pour permettre un fonctionnement efficace dans un environnement multiprocesseurs. Cela permet aux différents cœurs de traitement d'accéder aux différentes pages sans bloquer la machine, mais il restait un cas difficile à traiter. Imaginons que les différents processeurs tentent d'accéder à un même fichier, par exemple le cas très courant d'une bibliothèque partagée. Le premier processeur va donc poser son verrou et les autres vont devoir attendre que la ressource se libère. Nick Piggin, qui travaille chez Novell, a donc décidé d'utiliser la technologie de RCU (Read-Copy-Update) pour permettre aux différents processeurs d'accéder à la page de cache simultanément sans avoir à poser le moindre verrou. Le travail a été particulièrement long car c'est une partie sensible du noyau et parce que l'écriture de code sans utiliser de verrou est une tâche complexe. Le résultat est pourtant à la hauteur des espérances puisque dans son mail d'annonce du patch Nick a mesuré un gain très significatif lors de l'utilisation de la fonction find_get_page() qui permet de chercher si une page est dans le cache et si oui de l'utiliser. Avec le patch de cache de page sans verrou on ne dépense que 61 cycles de processeurs alors qu'il en fallait 143 auparavant (avec une architecture Core2).

Nick Piggin a également écrit la nouvelle fonction get_user_pages_fast() qui joue le même rôle que get_user_pages() mais sans verrou (plus besoin d'utiliser le sémaphore mmap_sem). Le gain est ici surtout visible pour les grosses machines très chargées et il a été évalué à environ 10% de performances en plus pour un octo-coeurs faisant tourner une grosse base DB2.

	En parlant de verrou le travail d'éradication du verrou global (BKL) qui avait été évoqué dans une précédente dépêche commence à porter ses fruits dans le noyau. La fonction open() des périphériques en mode caractères fonctionne désormais sans poser le moindre verrou sur le noyau. Ce travail en grande partie effectué par l'éditeur du site Linux Weekly News, Jonathan Corbet, continue dans la branche spécialisée bk-removal. C'est une tâche de longue haleine mais le nombre impressionnant de patchs ayant été incorporé dans ce noyau 2.6.27 incite à l'optimisme pour le moyen terme. Après avoir rendu de fiers services durant des années le verrou global du noyau Linux est devenu un frein à l'évolution et il vit sans doute ses derniers mois.

	Une toute nouvelle infrastructure de gestion de la mise en veille/hibernation est présente dans le noyau 2.6.27. L'infrastructure précédente était considéré comme n'étant pas suffisamment flexible et posant de nombreux problèmes dans le cas de pilotes déficients. Il n'était pas rare de constater des échecs lors du réveil de la machine du fait du manque d'informations en provenance des périphériques. Rafael J. Wysocki a donc proposé une nouvelle approche qui, après la revue critique des autres développeurs sur la liste de diffusion, est maintenant présente dans la branche principale du noyau.

Une nouvelle structure (pm_ops) fait son apparition et contient un ensemble de fonctions de rappel (callback) pour chacun des bus, des types de périphériques, des classes de périphériques et finalement pour les périphériques eux-mêmes. Les cas de la mise en veille (suspend to RAM) et de la mise en hibernation (suspend to disk) sont également séparés afin d'éviter les interférences entre ces deux opérations (ce qui avait été demandé par Linus depuis des mois à grand renforts de mails à base de « f*cking »). Le code se trouvant dans drivers/base/power/main.c a été adapté et les pilotes l'utilisant peuvent maintenant tirer profit de la nouvelle infrastructure de mise en veille/hibernation. Pour l'instant l'ancien code est toujours présent afin de permettre une compatibilité mais cela ne va pas durer puisque la conversion des pilotes présents dans le noyau est un des grands avantages permis par le modèle du logiciel libre. Il est à noter que le "coût" de cette toute nouvelle infrastructure est matérialisé par l'introduction d'un grand nombre de ces fonctions de rappel (callbacks) dans le noyau mais qu'il a été jugé que le jeu en valait la chandelle afin d'obtenir une mise en veille/hibernation plus fiable et de meilleure qualité. Une présentation technique détaillée des problèmes de l'ancienne infrastructure et des solutions adoptées par la nouvelle a été effectué lors du dernier symposium Linux. L'article au format pdf de Rafael J. Wysocki et Leonard Brown est disponible ici.

	Toujours dans le domaine de la mise en veille/hibernation le patch basé sur Kexec a été inclus dans le noyau 2.6.27 à titre de solution alternative. Le développeur Ying Huang a suivi une stratégie complètement différente pour implémenter la mise en hibernation (suspend-to-disk) puisqu'il a utilisé la fonction Kdump/Kexec en la détournant de son rôle habituel. En temps normal cette fonction est utilisée pour sauver l'état du noyau lors d'un crash du système. Un noyau sain (nommé "noyau de capture") est gardé en mémoire dans une zone spéciale séparée et, lors du crash, un appel à la fonction kexec() est effectué. Cet appel permet au noyau sain de prendre la main afin de sauvegarder sur le disque toutes les informations sur le noyau fautif (dump). Cette sauvegarde facilite grandement le débogage ultérieur qui sera effectué par les développeurs. Toute cette procédure, détaillée dans ce fichier pdf, ressemble fortement à une mise en hibernation (suspend-to-disk) puisqu'on a un système qui enregistre l'état exact de la machine à un moment donné et qui écrit sur le disque pour sauvegarder cet état précis. Ying Huang a donc décidé de modifier Kdump/Kexec afin de permettre au "noyau de capture" de rendre la main au noyau originel après avoir lu le dump sauvé sur le disque. On a ainsi une fonction complète d'hibernation et - avantage de cette solution élégante -, on unifie et on simplifie le code (plus besoin de mettre les processus au "freezer" comme avec l'hibernation actuelle).

Deux choses sont toutefois à noter: L'hibernation basée sur Kexec est actuellement envisagée comme alternative au code existant et il ne le remplace pas, même si cela pourrait arriver dans les futurs noyaux. Enfin cette solution alternative est seulement disponible pour les architectures x86 à l'heure actuelle.

	La pile réseau a été profondément modifiée pour permettre le support des queues multiples. Jusqu'à présent les paquets d'un périphérique réseau parcouraient la pile du noyau à la queue leu leu dans une sorte de "tuyau" unique mais il vite devenu évident que ce mode de fonctionnement devient de plus en plus limitant avec les besoins modernes. De nombreux périphériques réseau implémentent des classes de transfert différentes selon les besoins, par exemple une classe à haute priorité qui peut être utilisé pour transmettre de la vidéo ou de la voix et une classe à basse priorité pour les transferts pair-à-pair en arrière-plan. C'est ce qu'on nomme la gestion de la QoS (Quality of Service). Le fait de devoir entasser tous les paquets réseau d'un même périphérique dans une seule queue d'attente alors que les classes de ces paquets sont différentes est inefficace. La priorité des paquets est donc actuellement gérée dans le noyau de façon suboptimale et David Miller a décidé de réorganiser ce point particulier de la pile réseau en proposant un patch sur la liste de distribution. Le noyau 2.6.27 propose ainsi une implémentation des queues multiples qui sont ordonnancées de façon concurrente en fonction de la priorité des classes. Pour les périphériques qui gèrent ces queues multiples cela signifie une meilleure gestion de la QoS et pour les périphériques plus simples, qui ne gèrent pas les queues multiples, rien ne change et leur code n'a pas a être modifié. De nombreuses cartes wifi vont progressivement profiter de cette implémentation des queues multiples au fur et à mesure que leur code sera adapté. Il est à noter que cette implémentation du mécanisme des queues multiples, si elle est utile pour les réseaux sans fil, est également appréciable pour les réseaux à haut débit. Pour utiliser une ligne à 10 gigabits à son plein potentiel il est parfois utile d'avoir plus d'une queue d'attente afin de réduire les problèmes d'attente de libération des verrous (locking contention).

Pour aller plus loin dans la compréhension de ce mécanisme vous pouvez consulter la présentation pdf de David Miller ou bien aller sur son blog (souvent très technique).

	Du côté du système de fichiers Ext4 le travail continue et le remplacement officiel d'Ext3 dans nos machines se rapproche. Le leader du projet, Ted Ts'o, a posté sur son blog le résultat d'une vérification (check) du système de fichiers et il obtient des résultats plus qu'encourageants. Selon son test, une passe de vérification (fsck) sur un volume de 128 Go, Ext4 est près de sept fois plus rapide que Ext3 lors du check ! Quand on passe de 424 secondes à seulement 63 lors d'une vérification du système de fichiers on peut dire que le travail sur Ext4 a vraiment porté ses fruits.

Le dernier gros morceau technologique faisant partie de la todo list est également entré dans Ext4 sous la forme du patch implémentant l'allocation retardée (delayed allocation). Déjà utilisée par des systèmes de fichiers comme btrfs ou ZFS, cette technique consiste à ne pas allouer tout de suite les blocs sur le disque lors d'une opération d'écriture. On décrémente juste le compteur d'espace libre mais on ne réserve aucun bloc sur le disque et on marque le tampon mémoire comme étant alloué avec retard (BH_DELAY). Quand finalement le tampon est vidé (flushé) pour écrire sur le disque, le noyau va prendre toutes les pages marquées BH_DELAY et va allouer les blocs sur le disque de façon bien plus efficace puisqu'il aura une vision plus complète des écritures à effectuer. Avec cette technique on augmente les performances, on diminue encore plus la fragmentation puisque l'allocation est optimisée et on économise des cycles processeurs en ne faisant qu'une passe d'allocation au lieu de plusieurs.

Encore une fois un fichier pdf issu du symposium Linux d'Ottawa est disponible pour ceux qui voudront vraiment comprendre en profondeur le mécanisme d'allocation retardée utilisé par Ext4.

	L'ajout du pilote GSPCA qui regroupe le support d'une multitude de webcams fait son entrée dans le noyau. Après l'entrée du pilote UVC dans la version précédente de Linux voici maintenant l'arrivée de GSPCA (Generic Software Package for Camera Adapters) qui permet la gestion d'une longue liste de webcams. Maintenu par le français Michel Xhaard, ce projet GSPCA existe depuis de nombreuses années mais il n'avait jamais trouvé son chemin jusqu'au noyau officiel. Bien entendu l'acceptation dans la branche principale du noyau a nécessité un peu de travail de nettoyage. Il a en effet été nécessaire d'enlever les parties s'occupant du décodage des formats vidéos "exotiques" des constructeurs de webcams, un tel décodage n'ayant absolument rien à faire dans le noyau. Une bibliothèque de conversion en espace utilisateur, libv4l, a été écrite par Hans de Goede afin de s'occuper de ces taches de décodage vidéo.

Ces deux pilotes, UVC et GSPCA, permettent maintenant au noyau Linux de gérer l'immense majorité des webcams qui existent sur le marché.

	De nombreux pilotes présents dans le noyau 2.6.27 ont été modifiés afin d'utiliser le chargeur de micrologiciel (firmware). Le travail de David Woodhouse a consisté a généraliser l'utilisation de la fonction request_firmware() qui permet aux pilotes d'aller chercher leur micrologiciel dans le répertoire /firmware. À terme cela signifie la fin des nombreux pilotes qui implémentaient leur propre solution avec un firmware « en dur » dans le code du noyau puisque tous les micro-logiciels ont vocation à rejoindre ce répertoire /firmware. Pour les pilotes qui ont été modifiés la séparation est maintenant stricte entre leur code à proprement parler et le micro-logiciel (toutefois il reste encore les pilotes de drivers/net et drivers/scsi à convertir). Le résultat net c'est que le code noyau du noyau Linux est bien plus propre.

Cette solution permet également de faciliter le travail des distributions les plus puristes qui ne veulent pas distribuer avec le noyau des firmwares non-libres. Ici règne une incertitude juridique puisque personne ne sait vraiment si les firmwares peuvent être distribués avec un noyau sous licence GPL (sans parler des constructeurs qui ne veulent pas que leur micro-logiciel fassent partie d'un noyau GPL). Ces incertitudes lancinantes ne disparaissent pas magiquement avec la solution de David Woodhouse mais il est maintenant trivial pour les distributions de distribuer ou pas les firmwares avec le noyau. Il sera possible de distribuer un tarball séparé pour les micro-logiciels et chaque distribution fera son choix entre les deux solutions.

En bref....

	La fonction de hachage du consortium européen RIPE fait son entrée dans le code cryptographique du noyau. Les algorithmes RIPEMD-128, RIPEMD-160, RIPEMD-256, et RIPEMD-320 sont maintenant disponibles.

	Alors que le noyau précédent avait vu le retrait de la possibilité d'exécuter des binaires Solaris c'est maintenant la couche de compatibilité avec le système SGI IRIX qui a été enlevée (avec un patch intitulé "IRIX: Goodbye and thanks for all the fish"). Ce code, mal maintenu et non utilisé, a été supprimé au bénéfice de la simplification du noyau.

	Les processeurs de type x86-64 peuvent maintenant utiliser une taille de page de 1Go (en plus des tailles habituelles de 4Ko et 2Mo). Cette gestion des hugepages permet de moins solliciter le TLB (Translation lookaside buffer) puisque le cache du TLB peut gérer une plus grande quantité de mémoire. Les applications de bases de données devraient en tirer un bénéfice important.

	L'outil LatencyTOP (évoqué dans ce journal) peut désormais fonctionner sur les processeurs de type ARM. Un autre patch ajoute également le support des PowerPC.

	Dans la même veine le débogueur intégré dans le noyau 2.6.26 (et qui n'était compatible qu'avec les architectures x86 et SPARC) peut maintenant fonctionner avec les architectures ARM et PowerPC.

	Comme indiqué par Linus dans ses mails d'annonce des versions candidates il est désormais possible d'installer le noyau mainline sur des machines à 4096 processeurs

	L'infrastructure de test du mécanisme RCU (Read-Copy-Update), qui peut être activée par l'option CONFIG_RCU_TORTURE_TEST, a été améliorée. Paul E. McKenney, qui est l'auteur de rcutorture, a investi beaucoup de temps dans les divers patchs afin de rendre son outil plus agressif et plus complet dans ses tests. L'intitulé du patch est d'ailleurs parlant puisqu'il s'intitule "RCU : Make rcutorture more vicious".

	Après un travail de longue haleine les processeurs de type IA64 (Itanium) sont maintenant compatibles avec l'interface unifiée de virtualisation paravirt_ops.

	L'arrivée dans le noyau des premiers patchs permettant le support des futurs processeurs Power7 a provoqué pas mal de spéculations. Que ce soit le travail du noyau ou celui effectué dans binutils, la simple lecture du code soumis permet d'en savoir un peu plus sur la future bête de course d'IBM et sur son unité vectorielle VSX.

	Enfin vous serez sûrement contents d'apprendre que le noyau 2.6.27 vous permet maintenant d'ajouter et d'enlever à chaud des barrettes de mémoire vive sur votre petit mainframe S390 personnel (prix d'entrée de gamme aux alentours de 100.000 $).

Pour un bilan en chiffres (analyse statistique issue de cet article du site LWN) le noyau 2.6.27 aura incorporé plus de 10604 patchs (10100 pour les noyau 2.6.26). Cela représente un gain net de 218000 lignes (+826000 et -608000).

On peut noter que le français Jean-François Moine est le troisième contributeur en terme de lignes de code du fait de son important travail sur l'intégration et le nettoyage du pilote de webcam GSPCA.

Ces plus de dix mille patchs viennent de 1109 développeurs différents (1065 pour le noyau 2.6.26) travaillant pour plus de 150 entreprises.

Pour le futur...

	Dans le domaine des gestionnaire de mémoire pour les cartes graphiques il est probable que GEM va faire son entrée (dès la version 2.6.28 ou la suivante) et que TTM a perdu la bataille de l'intégration dans la branche principale. La comparaison entre les deux solutions qui a été effectuée par les développeurs Linux fait apparaître que TTM est une solution plus complexe, difficile à utiliser et ayant une API en partie conçue pour satisfaire les besoins spécifiques des pilotes propriétaires (ce qui évidemment ne plait à personne). C'est donc GEM qui a la faveur des développeurs (Jesse Bernes a annoncé qu'il allait proposer l'inclusion de GEM dans la branche Linux-next) et cela a provoqué l'émoi de ceux qui voient cette solution comme étant trop liée à Intel. Le futur est donc, provisoirement, encore ouvert mais les opposants à GEM ont intérêt, s'il n'est pas déjà trop tard, à proposer très rapidement une alternative crédible.

	le travail continue sur le système de fichiers btrfs et la version 0.16 a été annoncée par Chris Mason le 5 août dernier. Btrfs (prononcer butter fs) a l'ambition de devenir le système de fichiers de nouvelle génération des systèmes GNU/Linux et introduit beaucoup de nouveautés déjà décrites dans une dépêche précédente. Cette nouvelle version 0.16 fait disparaître le verrou global de btrfs au profit de nombreux petits verrous locaux afin de tirer parti des machines multiprocesseurs. Dans la même veine les tâches d'arrière plan diverses (comme le calcul des sommes de contrôle) sont maintenant exécutées par des threads séparés. La version 0.16 apporte également le support des attributs étendus (ACL) et un nouveau système de cache pour la gestion des snapshots. Le dépôt du code source est passé à Git afin de faciliter la future intégration dans la branche principale et continuer le développement directement en mainline. Andrew Morton a proposé une intégration rapide dans la branche linux-next en vue d'une entrée dès le noyau 2.6.29. Btrfs se positionne de plus en plus comme LA solution Linux pour avoir un système de fichiers de nouvelle génération.

	Néanmoins tout le monde n'est pas de cet avis et Daniel Phillips a posté le 3 juillet un long mail sur la mailing list du noyau afin d'expliquer les grandes lignes du design d'un système de fichiers alternatif nommé Tux3 ("Comme tout le monde semble bien s'amuser a développer des nouveaux systèmes de fichiers en ce moment j'ai pensé que je pourrai me joindre à la fête").

Le but de Tux3 est d'implémenter les idées originales de Daniel Phillips sur le versionning, on trouve par exemple les informations sur les versions dans le feuilles des arbres B alors que btrfs et ZFS choisissent de créer un arbre par version. Cela permettrait à Tux3 de faire une économie de place lors du stockage des méta-données par rapport à ses deux concurrents. Il est à noter que Matt Dillon, qui dirige le développement de DragonFlyBSD, a échangé plusieurs mails avec Daniel Phillips afin de comparer son système de fichiers HAMMER et Tux3.

Les deux systèmes partagent de nombreuses idées et la conversation, bien que très technique, a sans aucun doute été mutuellement enrichissante. Matt a toutefois gentiment prévenu Daniel qu'il s'embarquait peut-être dans un projet plus complexe que ce qu'il pensait : "Il semble que Tux3 utilise pas mal d'idées similaires à ce que je fais dans HAMMER. Je pense que tu est sur la bonne voie. J'ajouterai quand même un mot d'avertissement, venant de mon expérience lors de l'implémentation de HAMMER, parce que je pense que tu va être confronté aux mêmes problèmes. J'ai passé 9 mois sur le design d'HAMMER et 9 mois pour l'écrire. Durant l'implémentation j'ai fini par jeter l'équivalent de 80% de ce qui était dans le design original. Une bonne part de ce que j'ai du abandonner lors du passage du projet à la réalité était dans le but de diminuer la complexité. (..) Si j'ai une inquiétude à propos de ton implémentation cela serait dans le secteur de la complexité algorithmique."

Si les idées de Tux3 sont innovantes il n'en est toutefois absolument pas au même stade de développement que btrfs. Daniel Philips l'a exprimé avec humour dans un mail daté du premier septembre : "Les derniers patchs ont permis d'amener Tux3 jusqu'au point ou il commence indéniablement à se comporter comme un système de fichiers: On peut écrire des fichiers, partir un moment et, quand on revient, ces fichiers sont toujours là et on peut les relire." Le chemin est donc encore long avant de pouvoir envisager l'inclusion dans la branche principale du noyau.

	Enfin, preuve du bouillonnement actuel dans le domaine des systèmes de fichiers, un concurrent de plus vient d'apparaître. Répondant au doux nom de NILFS (New Implementation of a Log-structured File System) ce système se propose d'enterrer tous les autres systèmes en se basant sur la technique d'écriture des données « en flux » (sous forme de log) sans avoir à se préoccuper d'optimiser l'écrire les données les unes à coté des autres (ce qui prend beaucoup de temps). L'idée est que les lectures de données se font très souvent à partir de la RAM et qu'il est donc plus rationnel d'optimiser l'écriture plutôt que la lecture. Le code a été soumis sur la liste de diffusion et un fichier pdf comparant NILFS avec d'autres systèmes de fichiers est disponible.

NILFS semble particulièrement adapté aux nouveaux disques SSD et il constitue donc, aux cotés de LogFS, une alternative possible au tout nouveau UBIFS (quand l'accès direct à la mémoire flash sous-jacente sera possible).

L'inquiétude d'Andrew Morton sur le manque de travail des développeurs face à la vague future des disques SSD semble donc étonnante : "Il me semble entendre un silence assourdissant au sujet du support de ces périphériques SSD. J'ai la vague inquiétude que nous allons assister à une diffusion massive de ces SSD et que Linux y fera face avec le pantalon sur les chevilles."

Andrew Wilcox a été prompt a lui rétorquer qu'au contraire la situation était plutôt bonne et qu'il n'y avait pas de souci à se faire : "Je travaille (et je poste des patchs) sur le support des SSD Intel. Honnêtement nos pantalons évoluent actuellement dans la zone de l'aine."

Aller plus loin

	
Les nouveautés du noyau 2.6.27
(31 clics)

	
Le bilan des ajouts partie 1
(28 clics)

	
Le bilan des ajouts partie 2
(18 clics)

	
Le bilan des ajouts partie 3
(17 clics)

	
Les prévisions pour l'avenir de Linux
(6 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections26.png

