

Nouvelle version majeure de Python (2.6)

Posté par Victor STINNER (site web personnel) le 02 octobre 2008 à 12:25.

Modéré par rootix.

Étiquettes :
aucune

[image: Python]

En attendant la sortie de Python3 prévue mi-octobre, le langage de programmation Python sort en version 2.6. Cette version vise à préparer la migration vers Python3 et apporte énormément de nouveautés, aussi bien dans le langage que dans la bibliothèque standard. Les principales nouveautés sont décrites dans la seconde partie de cet article.

Le développement de Python est ouvert et suit les propositions d'améliorations (PEP). L'outil de suivi de bugs (bugs.python.org) a migré de Sourceforge à une installation personnalisée de Roundup. La documentation LaTeX a été convertie dans le format reStructuredText et est maintenant compilée avec l'outil Sphinx, développé pour l'occasion.
Améliorations du langage

	La PEP 3101 (Advanced String Formatting) révolutionne la manière de formater une chaîne de caractères. Exemples : "{0} {1}!".format("Hello", "World") ou "objet={obj}, taille={obj.taille}".format(obj=mon_objet). On peut réutiliser un argument plusieurs fois, changer l'ordre des arguments, lire un attribut d'un objet, lire un valeur dans un dictionnaire, etc.

	La PEP 3119 (Introducing Abstract Base Classes) permet de spécifier qu'une classe implémente une interface. Exemples d'ABC : Hashable, Iterator, Sized. Voir aussi la PEP 3141 (A Type Hierarchy for Numbers).

	Grâce à la PEP 3129 (Class Decorators), les décorateurs sont maintenant applicables aux classes.

	L'usage de with se généralise et est simplifié par la création du module contextmanager.

Nouveaux modules et nouvelles classes

	Le module multiprocessing est une réponse à la parallélisation massive des ordinateurs (processeurs multi-cœurs). Il permet d'exécuter une fonction dans plusieurs processus séparés de manière transparente. Rappel : à cause du Global Interpreter Lock (GIL), Python est incapable d'exécuter plusieurs threads en parallèle.

	Le module json gère la sérialisation d'objets dans le format JavaScript Object Notation (supporte l'import et l'export).

	Le module fractions contient la classe Fraction qui stocke la valeur exacte d'une fraction que les nombres flottants ne peuvent qu'approximer. D'ailleurs, le type float() supporte maintenant les valeurs « nan » (not an number), « +inf » et « -inf ».

Compatibilité avec Python3

Nombreuses fonctionnalités Python3 sont accessibles de manière optionnelles, par exemple par le module future_builtins :

	Avec « from __future__ import print_function », on peut utiliser print comme une simple fonction, alors que par défaut c'est un mot clé dans Python2. Exemple : print("Hello", "World", sep="_", end="!\n", file=sys.stdout) affiche « Hello_World! ». Lire la PEP 3105 (Make print a function).

	Les nombres peuvent être écrits directement en binaire. Le nouveau préfixe octal est « 0o ». Exemples : deux = 0b10 et dix=0o10. Lire la PEP 3127 (Integer Literal Support and Syntax).

	La PEP 3110 (Catching Exceptions in Python 3000) introduit une notation alternative pour les exceptions : « except (ValueError, TypeError) as err: ». Elle évite les erreurs du type « except ValueError, TypeError: ».

	Création du type bytes() qui est en fait un alias de str(). La PEP 3112 (Bytes literals in Python 3000) introduit les chaînes d'octets littérales : b'octets' est équivalent à 'octets'. Sauf avec « from __future__ import unicode_literals », dans quel cas les chaînes seront considérées de type unicode : 'unicode' vs b'octets').

	La PEP 3116 (New I/O) décrit le module io, la nouvelle bibliothèque d'entrée/sortie. Par défaut, c'est l'ancienne bibliothèque qui est utilisée. Utilisez par exemple io.open() pour accéder à vos fichiers textes en unicode.

Interprète Python

	Un utilisateur peut installer des modules Python dans son dossier personnel. Exemple : dossier « ~/.local/lib/python2.6/site-packages » dans le cas de Linux.

	Il est désormais possible de contrôler l'écriture des scripts Python compilés (.pyc et .pyo) avec l'option -B de Python et la variable d'environnement PYTHONDONTWRITEBYTECODE.

Faut-il migrer à Python3 ?

Python2 n'est pas près d'être remplacé par Python3. La migration se fera en douceur et progressivement.

Pour l'instant, il est recommandé d'écrire du code Python2 et le convertir avec l'outil 2to3 (intégré dans Python 2.6). En cas de problème, corriger le code original en évitant, dans la mesure du possible, d'introduire des tests sur le numéro de version.

Sachant que des projets ont mis plusieurs mois à migrer de Python 2.4 à Python 2.5, il y a peu de chance pour que les projets majeurs migrent complètement à Python3.

Python 2.7 est déjà prévu et améliorera encore la compatibilité entre Python2 et Python3. En attendant, Python 3.0 nous réserve encore quelques surprises (comme les arguments sous forme de mot clé uniquement, oups, ce n'est plus une surprise) !
Aller plus loin

	
Python
(11 clics)

	
What’s New in Python 2.6
(16 clics)

	
Propositions d'améliorations de Python (PEP)
(12 clics)

	
Générateur de documentation Sphinx
(4 clics)

	
Python sur dmoz
(25 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections41.png
python

powered

