

Opmock : un outil pour le TDD efficace en C et C++

Posté par pognibene le 14 mars 2011 à 13:33.

Modéré par Lucas Bonnet.
Licence CC By‑SA.

Étiquettes :

	tdd

	c

	c++

	développement

[image: Ligne de commande]

Le [TDD] est une pratique souvent utilisée dans les projets de développement utilisant les « méthodes agiles ». Pour supporter cette pratique, il est nécessaire de disposer d'outils qui permettent d'écrire facilement des tests unitaires, mais également de couper les dépendances d'une section de code, afin de la tester en isolation. Les langages actuels, comme Java ou C#, bénéficient tous de pléthore d'outils de ce type, comme Jmockit ou Mockito. Cependant, le C et le C++ n'ont pas cette chance, bien qu'une quantité impressionnante de code les utilise.

Opmock est un outil de génération automatique de stubs et de mocks, qui permet de simplifier énormément le TDD avec des bases de code importantes en C ou C++, existantes ou nouvelles.

Le projet est placé sous licence GPLv3.

Opmock est né d'un besoin concret : il s'agissait de tenter d'introduire TDD sur une base de code C et C++ ancienne (15 ans d'historique), très volumineuse, dans le domaine des télécoms embarquées. S'il existe de nombreux outils de test unitaire (comme cppunit, cxxtest, check, et bien d'autres), ceux qui permettent d'automatiser la création de stubs ou de mocks ne sont pas légion. En C++, on peut utiliser Google Mock, mais cet outil est fortement dépendant de fonctionnalités avancées du C++ qui ne sont souvent pas disponibles pour du code embarqué. En C, on a cmock, mais il n'implémente pas toute la syntaxe du C et présente des incompatibilités avec du code manipulant les signaux.

Opmock est donc un générateur de code C/C++ (mais écrit en Java), sous licence GPL v3, avec pour cible principale les systèmes Unix et GNU/Linux. Il s'appuie sur le programme SWIG pour analyser des fichiers headers et générer du code qui permet :

	de gérer des mocks programmables dans le périmètre d'un test ;

	de gérer des « callbacks » (équivalents à des stubs multiples pour une même fonction) ;

	d'enregistrer et vérifier les paramètres passés lors d'un test.

Un exemple simple :

 void test_fizzbuzz_with_3()
 {
 // la prochaine fois qu'on appelle la fonction C do_sound,
 // elle doit recevoir le paramètre "FIZZ" et retourner 0.
 // le paramètre est validé par un "string matcher" dont on passe l'adresse
 do_sound_ExpectAndReturn ("FIZZ", 0, cmp_cstr);

 // on invoque le code à tester, qui va lui-même appeler la dépendance,
 // en l’occurrence la fonction do_sound. Mais c'est notre mock qui va
 // être appelé au lieu de la fonction originale... Et il va se comporter
 // comme nous l'avons défini plus haut.
 char *res = fizzbuzz(3);

 // on vérifie qu'on a le résultat attendu
 // sinon le test échoue
 OP_ASSERT_EQUAL_CSTRING("FIZZ", res);
 free(res);

 // on vérifie que le mock a reçu les bons paramètres
 // et qu'il a été appelé le bon nombre de fois,
 // sinon le test échoue
 OP_VERIFY();
 }

Si opmock embarque également un framework de test unitaire minimal, mais en général suffisant, il permet, bien sûr, d'en utiliser un autre comme Google Test ou Cppunit.

Il est activement utilisé pour le réusinage (refactoring) et pour améliorer une base de code de quelques dizaines de millions de lignes chez l'un des plus grands constructeurs mondiaux de télécom.

Si, vous aussi, vous développez en C ou en C++, et que vous voulez le faire en utilisant des tests unitaires, alors essayez-le !

Aller plus loin

	
Page sourceforge du projet Opmock
(481 clics)

	
Page du projet SWIG
(166 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections72.png

